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ABSTRACT
Most commonly, diagnosing the brain hemorrhage - a con-
dition caused by a brain artery busting and causing bleed-
ing is done by medical experts identifying such pathologies
from the computer tomography (CT) images. With great
advancements in the domain of deep learning, utilizing deep
convolutional neural networks (CNN) for such tasks has al-
ready proven to achieve encouraging results. One of the ma-
jor problems of using such an approach is the need for big
labeled datasets to train such deep architectures. One of the
efficient techniques for training CNNs with smaller datasets
is transfer learning. For the efficient use of transfer learning,
many parameters are needed to be set, which are having a
great impact on the classification performance of the CNN.
Most of those parameters are commonly set based on our
previous experience or by trial and error. The proposed
method addresses the problem of tuning the transfer learn-
ing technique utilizing the nature-inspired, population-based
metaheuristic Grey Wolf Optimizer (GWO). The proposed
method was tested on a small head CT medical imaging
dataset. The results obtained from the conducted experi-
ments show that the proposed method outperforms the con-
ventional approach of parameter settings for transfer learn-
ing.
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1. INTRODUCTION
Most commonly used medical imaging technique to assess
the severity of brain hemorrhage, also termed as a cere-
bral hemorrhage, intracranial hemorrhage or intracerebral
hemorrhage is the computer tomography or shortly CT. As
reported in [24], each year intracerebral hemorrhage (ICH)
affects 2.5 per 10,000 people worldwide and is associated
with high mortality that only 38% of ICH patients could
survive over one year. Besides, more than 80% of people
are suffering due to being born with a weak spot in their
major brain arteries. However, the early diagnosis of the
condition and receiving immediate and relevant treatment
can be a lifesaver for the affected patient. Traditionally, the
tools helping in diagnosing such conditions are CT images
obtained from the CT scan, which are then examined by the
expert such as an experienced doctor, who has the ability to
identify important symptoms of the disease from the image

by a naked eye [3].

With the expansion of deep learning field and with the great
achievements of deep convolutional neural networks (CNN)
for the image and video recognition tasks [26, 27] are such
approaches and methodologies also being used for addressing
various medical areas such as medical image analysis [1] and
classification [31, 12], biomedical signal segmentation [23]
and detection of various human organ activities [30].

In recent studies [12, 4, 11], the authors have already ad-
dressed the problem of identifying various kinds of brain
hemorrhages utilizing different kinds of more or less com-
plex deep CNNs. However, the problem with the training
of such deep CNN architectures remains the same. In or-
der to achieve acceptable performance, the training of such
networks requires a lot of resources in terms of time and pro-
cessing power. Additionally, a big dataset of images, hand-
labeled by experts is also required. Given the fact that such
high-quality big datasets of biomedical images are hard to
obtain, researchers are trying various approaches and tech-
niques to overcome this problem. One of the most popular
techniques for training deep CNNs on small datasets is trans-
fer learning, which has already proven to achieve great re-
sults [4, 14]. But the transfer learning techniques also comes
with the downsides. Most commonly, the biggest problems
when utilizing the transfer learning approaches are finding
out which and how many layers to fine-tune and how to set
the training parameters for the fine-tuning of the CNN in
order to obtain the acceptable outcome.

Based on the encouraging results of transfer learning tech-
nique being used to train CNNs for the task of classification
of biomedical images and our previous experience on opti-
mizing various training parameters [32], we set our goal to
develop a method for an automatic optimization of trans-
fer learning utilizing nature-inspired population-based Grey
Wolf Optimizer (GWO) algorithm named GWOTLT.

The rest of the paper is organized as follows. In Section
2, we briefly describe methods which were used. In Sec-
tion 3, we present the proposed GWOTLT method, while in
Section 4 we describe the experimental setup of conducted
experiments, the results of which are presented in Section 5.
Conclusions and final remarks are gathered in Section 6.
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2. METHODS
In this section, the methods utilized in our proposed GWOTLT
method are briefly presented.

2.1 Convolutional Neural Network
In the 1980s, the CNNs were first presented in Fukushima’s
paper [10]. The author proposed a deep learning approach
for visual recognition, called neocognitron, which was based
on the hierarchical layers trained with the utilization of the
stochastic gradient descent algorithm. The major break-
through with CNNs occurred in 1998 with the LeCun’s LeNet5
[17] proposed architecture which is considered to be one of
the key factors that started the enormous expansion of the
deep learning field.

Initially, the deep CNNs were defined as 2-dimensional con-
strained neural networks with alternating convolutional and
subsampling or pooling layers which are fully connected at
the end, combining three architectural ideas [17]:

• local receptive fields,

• shared weights, and

• spatial and temporal subsampling.

Most commonly the convolutional layer is composed of sev-
eral so-called feature maps. Those feature maps are calcu-
lated with different weight vectors, which enable us to ex-
tract multiple features from each location. The results of the
convolutional calculation are obtained from a convolutional
operation performed between feature maps of the previous
layer and convolution kernel of the current layer in addition
to the activation function. A subsampling layer or pooling
layer reduces the dimension of feature maps, while preserv-
ing the important extracted features, usually performing lo-
cal averaging and subsampling. The fact, that extracted
features’ real locations are not important as long as their
approximate positions relative to others remain the same, is
making subsampling possible [17].

Although the researchers have through the years developed
various complex CNN architectures which proven to be highly
successful in the large-scale image and video recognition such
as Krizhevsky’s AlexNet [15], Szegedy’s GoogleNet [27] and
Simonyan’s VGG16 [26], the challenges regarding image and
video recognition still exist. Such major challenges are pri-
marily the need for large datasets in order to train the CNNs
and the time complexity of the training process.

2.2 Transfer Learning
One of the most popular approaches to address the time
complexity of deep CNN training process as well as the prob-
lem of not having large dataset is known as a transfer learn-
ing. Transfer learning can be defined as the improvement of
learning a new task through the transfer of knowledge from
a related task that has already been learned. In machine
learning terms, the transfer learning roughly translates to
transferring the weights of already trained deep neural net-
work model for one task, to the model tackling second re-
lated task [13]. Based on previous work [16, 2, 25], such

approaches work especially well if we have a small, insuffi-
cient dataset.

Transfer learning is most commonly used in two ways [2, 21]:

• Fine-tuning in which the weights of the pre-trained
CNN base model are preserved (frozen) on some of
the layers and fine-tuned (trained) in remaining layers
of CNN.

• CNN as a feature extractor, where the general idea is
to access features of any layers and using those encoded
features to train a classifier of your choice.

Generally, the first (top) layers of the CNN preserve more
abstract, generic features applicable to other tasks, while
the layers closer to the bottom provide more specific fea-
tures that can benefit from fine-tuning as they will be ad-
justed specifically for the targeted task. For the fine-tuning
approach to transfer learning, there is no general recipe or
rule to follow on selecting which layers to tune and which
ones to preserve as they are. Also, another challenge uti-
lizing the fine-tuning approach is deciding how many layers
to add to the bottom of the pre-trained convolutional base,
and which optimizer and learning rate to use in the process
of fine-tuning.

2.3 Grey Wolf Optimizer
In recent years, swarm intelligence and bio-inspired algo-
rithms for solving the optimization problems are quite pop-
ular and proven to be very efficient in solving real-world
problems [9].

One of the most popular representatives of such optimization
algorithms is a Grey Wolf Optimizer or simply GWO [19].
The inspiration of GWO is adapted from a strict leader-
ship hierarchy and hunting mechanisms of grey wolfs (Canis
lupus). The grey wolf leadership hierarchy is divided into
four dominance groups, i.e. alpha, beta, delta and, omega.
Besides the leadership hierarchy, group hunting is also an in-
teresting social behavior of grey wolfs. As defined by authors
in [20] main phases of grey wolf hunting are as follows [19]:

• Tracking, chasing and approaching the prey.

• Pursuing, encircling, and harassing the prey until it
stops moving.

• Attack towards the prey.

The GWO algorithm implementation is mathematically mod-
eling the mentioned hunting technique and the social hierar-
chy in order to perform optimization. The basic pseudo-code
of GWO algorithm is presented in Algorithm 1.

3. PROPOSED METHOD
The basic concept of our proposed method for tuning of
transfer learning approach based on the GWO algorithm,
named as GWOTLT is presented in Figure 1. The GWO
algorithm is used to find the optimal parameters for the
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Algorithm 1 Pseudo code of the GWO algorithm.

1: Initialize the grey wolf population Xi (i = 1, 2, ..., n)
2: Initialize a, A, and C
3: Calculate the fitness of each search agent
4: Xα = the best search agent
5: Xβ = the second best search agent
6: Xδ = the third best search agent
7: while i < Maximum iterations do
8: for each search agent do
9: Update the position of the current search agent

10: end for
11: Update a, A, and C
12: Calculate the fitness of all search agents
13: Update Xα, Xβ , and Xδ

14: i = i + 1
15: end while
16: return Xα

fine-tuning transfer learning process. In our case, the goal is
to find a number of neurons in the last fully connected layer,
dropout probability of dropout layer and the most suitable
optimizer and learning rate value.

Figure 1: The conceptual diagram of the proposed
GWOTLT method.

Given the number of optimized parameters for fine-tuning
of the transfer learning process, the GWOTLT is producing
the solution with the dimension of 4. The individuals of
GWOTLT produced solutions are presented as real-valued
vectors:

x
(t)
i = (x

(t)
i,0, . . . , x

(t)
i,n), for i = 0, . . . ,Np − 1 , (1)

where each element of the solution is in the interval x
(t)
i,1 ∈

[0, 1].

In next step, the real-valued vectors (solutions) are mapped
as defined in equations 2, 3, 4 and 5, where y1 presents the
number of neurons in last fully connected layer, y2 dropout

probability, y3 optimization function and y4 learning rate.
Each y1 value is mapped to the particular member of the
population N = {64, 128, 256, 512, 1024} according to the
members position in the population, which represents a group
of available numbers of neurons in last fully connected layer.
All of the y3 values are mapped to the specific member of
population O = {adam, rmsprop, sgd}, which represents a
group of available optimizer functions, while each y4 values
are mapped to the member of population L = {0.001, 0.0005,
0.0001, 0.00005, 0.00001}, which represents a group of learn-
ing rate choices.

y1 =

{
bx[i] ∗ 5 + 1c; y1 ∈ [1, 5] x[i] < 1

5 otherwise,
(2)

y2 = x[i] ∗ (0.9− 0.5) + 0.5; y2 ∈ [0.5, 0.9] (3)

y3 =

{
bx[i] ∗ 3 + 1c; y3 ∈ [1, 3] x[i] < 1

3 otherwise,
(4)

y4 =

{
bx[i] ∗ 5 + 1c; y4 ∈ [1, 5] x[i] < 1

5 otherwise,
(5)

To evaluate each solution produced by GWOTLT the fitness
function was defined as follows:

f(x) = 1−AUC(x) (6)

where f(x) is the fitness value for solution x and the AUC(x)
is an area under the ROC curve calculated on test split of
the search dataset sub-sample.

4. EXPERIMENT SETUP
To evaluate the performance of our proposed method, we
conducted two experiments. The experimental settings, data-
set, evaluation methods and metrics used are in-depth pre-
sented in the following subsections.

The proposed method was implemented in Python program-
ming language with the following external libraries: Numpy
[28], Pandas [18], scikit-learn [22], NiaPy [29], Keras [5] and
Tensorflow [7].

All of the conducted experiments were performed using the
Intel Core i7-6700K quad-core CPU running at 4 GHz, 64GB
of RAM, and three Nvidia GeForce Titan X Pascal GPUs
each with dedicated 12GB of GDDR5 memory, running the
Linux Mint 19 operating system.

4.1 Dataset
Given the task - identification of brain hemorrhage from CT
images, we used a publicly available dataset of manually
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collected head CT scan images called Head CT - hemor-
rhage [8]. The dataset contains in total of 200 images of
various sizes. Of those 200 images, half of them are images
of normal head CT slides without any brain pathologies, and
the other half are the images containing some kind of brain
hemorrhage. Also, each image is collected from a different
person.

Figure 2: Example images of head CT scans, where
a) represents normal head CT scan image. while
b) represents the head CT scan image with brain
hemorrhage present.

4.2 Grey Wolf Optimizer settings
To initialize the GWO algorithm, tackling the problem of
finding the best suitable set of parameters to achieve the
best performance of transfer learning fine-tuning, the GWO
parameter settings presented in Table 1 were used.

Parameter Value

Dimension of the problem 4

Population size 10

Number of function evaluations 50

Lower bound 0.0

Upper bound 1.0

Table 1: The initial GWO parameter settings.

4.3 Baseline Convolutional Neural Network
For the convolutional base of our proposed method, we uti-
lized the VGG16 [26] CNN architecture presented in Fig-
ure 3, pre-trained on the imagenet [6] dataset. As we can
observe from the figure, the VGG16 CNN is comprised of
5 convolutional blocks, which together form a convolutional
base. At the bottom of the convolutional base a flatten
layer, two fully connected layers and one fully-connected
layer with softmax activation function forming a classifier
layer are chained. By default, VGG16 CNN on the input
receives an image of size 224 x 224 pixels and at the bot-
tom classifies fed images into 1000 classes, while each of the
convolutional layers of VGG architecture utilizes the ReLU
activation function.

Performing the transfer learning based on the VGG16 CNN
convolutional base, we have persisted the top four convolu-
tional blocks and enabled for fine-tuning only last convolu-
tional block. At the bottom of this convolutional base, we
have then chained a flatten layer, a dropout layer, fully con-
nected layer and classifier with softmax activation function,

classifying images into two target classes - images with and
images without brain hemorrhage present.

For the baseline experiments, we have set the parameters
which are we optimizing to the values presented in Table 2.

Parameter Value

Number of neurons on the
256

last fully connected layer

Dropout probability 0.5

Optimizer function RMSprop

Learning rate 10−5

Table 2: Baseline experiment parameter settings for
transfer learning fine tuning.

With the presented parameter settings, we trained the CNN
for 50 epochs utilizing an efficient mini-batch training, with
batch size set to 32. As presented in the dataset section, the
collected image sizes vary from 100 x 100 px to 300 x 300
px, thus we have decided to resize all images to the VGG16
default input size of 224 x 224 px.

4.4 GWOTLT settings
As presented in the previous section, the GWOTLT fine-
tuning transfer learning parameters are set based on the
produced GWO solution. The overall architecture of the
convolutional base and the appended classification layers at
the bottom are the same as in the baseline experiment. Due
to the iterative nature of our proposed method, we had to
split the given train set in ratio 80:20, where we used the
larger subset for training different GWOTLT produced so-
lutions and evaluating them - calculating the AUC on the
remaining smaller subset of the initial training set. In each
run of the GWOTLT, 50 evaluations of produced possible
solutions are conducted, from which the best - the one with
the highest fitness value is selected. To evaluate each solu-
tion, we train each solution for 10 epochs and then evaluate
its performance. The selected solution is then trained for
full 50 epochs on the whole given train dataset and finally
evaluated on the given test set.

4.5 Evaluation method and metrics
Using the described experimental setup, we conducted two
experiments, one using the CNN transfer learning approach
without any optimization reported as a Baseline and one uti-
lizing the presented GWOTLT method reported as GWOTLT.
For each of the experiments, we obtained six performance
metrics: time - reported in seconds, AUC, F − 1 score, pre-
cision, and recall, reported in percents and kappa coefficient
presented as a real value on the interval between 0 and 1.

To objectively evaluate the performance of the proposed
method, we adapted the gold standard 10-fold cross-validati-
on methodology, where a dataset is divided into train and
test sets in a ratio 90:10. Using the images from 9 out of 10
folds for the training and performing the performance eval-
uation on the remaining one fold. In the same manner, we
repeated the whole process in total 10 times, each time leav-
ing different fold out for the performance evaluation. The
reported values are presented as average values over 10 folds
if not specified otherwise.
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Figure 3: The architecture of the VGG16 convolutional neural network.

5. RESULTS
The obtained performance results from the conducted ex-
periments are summarized in Table 3. Focusing on the time
metrics, the reported results are expected, with the lowest
time complexity being achieved by the Baseline method. On
the other side, the proposed GWOTLT method is expected
to have a higher time complexity in general due to the it-
erative nature of the proposed method. In our case, the
GWOTLT method performed worse in the aspect of time
complexity, roughly by a factor 15.

Analyzing presented classification performance metrics, the
GWOTLT method is standing out with achieved best results
on all of the reported performance metrics. The AUC, F−1,
precision and recall metrics are higher by a margin of 4%,
5.18%, 2.27%, 7% respectively in comparison to the baseline
method. Focusing on the kappa coefficient values, we can ob-
serve that the GWOTLT achieved a near-perfect agreement
with kappa coefficient at 0.82 and outperformed the base-
line method by a margin of 0.08. Looking at the standard
deviations of the reported classification average metric val-
ues, we can observe that for all classification metrics, except
for the precision, the best performing GWOTLT method is
showing the smallest standard deviation. The greatest im-
provement of lowering the standard deviation the GWOTLT
achieved for the recall metric by a margin of 10.38%, while
the worst standard deviation is obtained for the precision
metric where the GWOTLT lacks behind just by 0.99%.

6. CONCLUSIONS
In this paper, we presented the GWOTLT method which is
a nature-inspired, population-based metaheuristics method
for tuning the transfer learning approach of training the deep
CNN. The GWOTLT method was implemented utilizing the
GWO optimization algorithm and applied to the problem of
identification of brain hemorrhage from the head CT scan
images. The results obtained from the conducted exper-
iments have proven that the proposed GWOTLT method
seems to be very promising for the task of transfer learning
tuning achieving higher classification performance for all of
the measured classification metrics.

Metrics Baseline GWOTLT

Time [s] 49.10 ± 1.85 759.10 ± 59.67

AUC [%] 87.00 ± 9.19 91.00 ± 7.75

F − 1 [%] 86.27 ± 11.03 91.45 ± 6.81

Precision [%] 88.62 ± 10.37 90.89 ± 11.36

Recall [%] 86.00 ± 17.13 93.00 ± 6.75

Kappa 0.74 ± 0.18 0.82 ± 0.15

Table 3: Comparison of average times, accuracies,
AUCs, F − 1 scores, precisions, recalls and kappa
coefficients with standard deviations over 10-fold
cross-validation.

In the future, we would like to expand our work to include
various CNN architectures as a convolutional base for our
GWOTLT method and also evaluate the performance of the
proposed method against various medical imaging datasets.
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