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Abstract—At this early stage in the COVID-19 epidemic, re-
searchers are looking for all possible insights into the new corona
virus SARS-CoV-2. One of the possibilities is an in-depth analysis
of X-ray images from COVID-19 patients. We first developed a
new adapted classification method that is able to identify COVID-
19 patients based on a chest X-ray, and then adopted a local
interpretable model-agnostic explanations approach to provide
the insights. The classification method uses a grey wolf optimizer
algorithm for the purpose of optimizing hyper-parameter values
within the transfer learning tuning of a CNN. The trained
model is then used to classify a set of X-ray images, upon
which the qualitative explanations are performed. The presented
approach was tested on a dataset of 842 X-ray images, with
the overall accuracy of 94.76 %, outperforming both conventional
CNN method as well as the compared baseline transfer learning
method. The achieved high classification accuracy enabled us to
perform a qualitative in-depth analysis, which revealed that there
are some regions of greater importance when identifying COVID-
19 cases, like aortic arch or carina and right main bronchus. The
proposed classification method proved to be very competitive,
enabling one to perform an in-depth analysis, necessary to gain
qualitative insights into the characteristics of COVID-19 disease.

Index Terms—COVID-19, classification, CNN, transfer learn-
ing, optimization

I. INTRODUCTION

Since December 2019, when in Wuhan city, the capital of
Hubei province in China, the cases of “unknown viral pneumo-
nia” started to gather, the world is witnessing a huge spread of
coronavirus disease 2019 (COVID-19) caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). Based on
the World Health Organization report published on the 15th
of April 2020, there were 1.9 million confirmed cases and
123,010 deaths globally, spreading across 210 countries and
territories [1].

The COVID-19 is the seventh known coronavirus to infect
humans. The two also known examples of coronavirus include
severe acute respiratory syndrome (SARS) and Middle East
respiratory syndrome (MERS). The first began in southern
China and resulted in 774 deaths out of 8,098 infected in-
dividuals in 29 countries from November 2002 through July
2003, while the second originated in Saudi Arabia and was
responsible for 848 deaths among 2,458 individuals in 27
countries through July 2019 [2].
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Since mid February 2020, various researchers [3] started to
collect and publish anonymized X-ray chest images of patients
diagnosed with COVID-19, which let the researchers to study
the collected data and possibly identify useful patterns, which
could give us useful insights and enable us to design and de-
velop computer-aided diagnosis systems which could facilitate
work for radiologists.

With the advancements of deep learning methods and
techniques in recent years, especially the ones utilizing con-
volutional neural networks (CNNs), various research works
proved that the application of such methods against the med-
ical domain problems is resulting in encouraging results [4].
Especially in the last months there is an increase of research
focused on applying the machine learning algorithms to iden-
tification of COVID-19. One of most common approaches to
tackle the mentioned issue is to utilize the transfer learning
approach as presented in [5], [6]. Based on our previous
experience with the detection of brain hemorrage from head
CT images [7] as well as promising results from similar
studies, we set our goals to adapting the method to identify a
COVID-19 chest X-ray images from a relatively small dataset.
Beside providing and evaluating a predictive model, we also
conducted an analysis of interpretable representations of our
model in order to gain useful insights on how the model
perceives the chest X-ray images, evaluating the model’s
decisions from a qualitative perspective.

II. METHODS

Since the first introduction of CNNs in 1980s [8], the
remarkable progress has been made in the image recognition
field especially due to the availability of large annotated
datasets, development of various deep CNN architectures
and increased computational capabilities. The CNNs or more
precisely the convolutional layers leverage three important
ideas that can help improve a machine learning system: sparse
interaction, parameter sharing and equivariant representations.
In contrast to the traditional neural network layers which
use matrix multiplication by a matrix of parameters with a
separate parameter describing the interaction between each
input unit and each output unit, the CNNs, however, typically
have sparse interactions, also known as sparse connectivity
or sparse weights. The sparse interactions are achieved by
making a kernel smaller than the input, which on the one side



enables us to detect small, meaningful features with kernels
that occupy only tens of pixels, while on the other side reduces
the memory consumption of the models and improves its
statistical efficiency, since we need to store fewer parameters.
Additionally, the use of parameter sharing in CNNs also
increases the memory and statistical efficiency in comparison
to the traditional neural network where each element of the
weight matrix is used exactly once when computing the
output of a layer. Furthermore, in the case of convolution,
the particular form of parameter sharing causes the layer to
have a property called equivariance. Basically, equivariance
enables convolution to create a 2-dimensional map of where
certain features appear in the input. If the object in the input is
moved, its representation will also move for the same amount
[9].

Those capabilities make the CNNs de facto standard for
solving the image recognition tasks in various domains from
medicine [10], [11], information security [12] to seismology
[13] or even agriculture [14]. However, training such CNN
models requires a large amount of labeled data, which can be
in certain fields, especially in medicine, a challenging task.
To overcome the lack of sufficient labeled dataset, one of
commonly used methods is transfer learning with fine-tuning,
which enables us to adapt a pre-trained model to our domain
problem, without requiring a large dataset.

A. Transfer Learning

The first appearances of transfer learning in publications are
dating back to the 1995 [15], mostly under different names
such as inductive transfer [16], incremental or cumulative
learning [17], and multitask learning [18], the latter one
being the most closely related to the transfer learning as
we know it today. In the most broader terms, the transfer
learning technique can be defined as the improvement of
learning a new task through the transfer of knowledge from a
related task which has been already learned. However, in the
machine learning terms, the transfer learning can be defined as
transferring the weights of already trained predictive model,
specialized for a specific task, to the new model addressing
similar but not the same task.

There are many different techniques on how to utilize the
transfer learning, one the most commonly used being the fine-
tuning. When utilizing the fine-tuning approach to transfer
learning, we are transferring the weights from a pre-trained
CNN to the new one [19]. Commonly, we only transfer the
weights in the so called convolutional base of CNN architec-
ture, which is composed from sequence of convolutional layers
and pooling layers, since those layers’ weights contain general
feature extraction capabilities. In general, the bottom layers
(more towards the input) of the CNN tend to extract more
abstract, generally applicable features than the top layers (more
toward the output), which tend to extract more task-specific
features. Therefore, when utilizing a fine-tuning technique,
most commonly we only fine-tune (train) the layers more
towards the top of the CNN architecture and leave the bottom
ones frozen (disabled for training) [19].

Regardless of the benefits of the transfer learning with fine-
tuning, such approach still has some challenges common to
the traditional approach of training CNN. One of such problem
is the selection of training parameters also known as hyper-
parameters. Setting appropriate value for hyper-parameters
such as learning rate, batch size, optimization function, etc.
directly reflects on how well the model is capable to train and
consequently impacts the model classification performance.

B. Grey Wolf Optimizer for Transfer Learning Tuning

The problem of setting the right values for the hyper-
parameters is also known as hyper-parameter optimization
(HPO) task. Most commonly are such tasks addressed with the
Gaussian Process approach, Tree-structured Parze Estimator
approach or Random search approach [20]. But in recent years,
population-based metaheuristic algorithms are becoming more
and more popular in successfully solving HPO problems [7],
[21], [22].

Based on our previous success with utilization of Grey Wolf
Optimizer (GWO) algorithm for the purpose of optimizing
hyper-parameter values, we decided to adapt our Grey Wolf
Optimizer for Transfer Learning Tuning (GWOTLT) method
presented in [7]. The GWOTLT method is based on the GWO
algorithm [23], which is one of the most popular representa-
tives of nature-inspired population-based metaheuristic algo-
rithms. The GWO is inspired from a strict leadership hierarchy
and hunting mechanisms of grey wolfs (Canis lupus). As
defined by authors in [23], there are three main phases of grey
wolfs hunting. First one is tracking, chasing and approaching
the prey, the second one is pursuing, encircling and harassing
the prey until it stops moving, and final third phase is the
attack toward the prey.

The basic concept of our GWOTLT method can be generally
defined in the following steps:

1) GWO produces the solution.

2) Solution is mapped to the values of sought hyper-
parameters.

3) CNN with mapped hyper-parameter values is trained.

4) The solution is evaluated calculating fitness value.

5) Fitness value is being passed back to the GWO.

Those steps are then being executed in an iterative manner,
for the given number of function evaluations.

The GWOTLT is producing a solution with the same num-
ber of elements as is the number of sought hyper-parameter
values. In our case the dimension of produced solution is 4,
since we are searching for the most optimal value of four
different hyper-parameters, namely: learning rate, optimizer
function, dropout probability of dropout layer, and the number
of neurons in last fully-connected (dense) layer. Formally, the
individuals of such GWOTLT produced solutions are presented
as a real-valued vectors:

(t) x(t))

x = (2%, al)), fori=0,...,Np—1, (1)

where each element of the solution is in the interval
xEtf € [0,1]. These real-valued vectors (solutions) are then

mapped to the used hyper-parameter values as defined in



equations 2 to 5, where y; denotes the number of neurons
in last fully connected layer, y» denotes dropout probability,
y3 denotes optimization function and y, denotes learning rate.
Each y; value is mapped to the particular member of the
population N = {64, 128,256,512,1024} according to the
members position in the population, which represents a group
of available numbers of neurons in last fully connected layer.
All of the ys3 values are mapped to the specific member of
population O = {adam, rmsprop, sgd}, which represents a
group of available optimizer functions, while each y, value
is mapped to the member of population L = {0.001,0.0005,
0.0001, 0.00005,0.00001}, which represents a group of learn-
ing rate choices.

Y1 = {Lm[i] *5+1];y1 €[1,5] zfi] < 1 @
5 otherwise,

y2 = z[i] * (0.9 — 0.5) 4+ 0.5; y2 € [0.5,0.9] 3)

s = {Lx[z‘] *34+1];y3 € [1,3] z[i] < 1 @
3 otherwise,

Y = {Lz[i] #*5+1)5ys € [1,5] =fi] < L )
5 otherwise,

The training utilizing the fine-tuning with mapped hyper-
parameter values is then being conducted in a straight-forward
manner where the last block of used CNN architecture is
being fine-tuned while the other (more bottom) layers remain
frozen. After the training is finished, the fitness values are
being calculated. We defined the fitness value as:

f(sol) =1— AUC(sol) (6)

where sol denotes the model trained with hyper-parameters
set based on the obtained GWOTLT solution, and AUC
defines the area under the ROC curve metric.

The fitness value is then being passed back to the GWO,
based on which the new solution will be produced.

C. Local Interpretable Model-agnostic Explanations

The success of adopting machine learning models, espe-
cially in more sensitive domains such as medicine, depends
on its interpretation or on how well decision makers are
able to understand and trust model predictions. The level of
confidence in the results is increased when competent decision
makers have a clear insight into what influenced the decision
most, what are the possible errors and what is the behavior of
the model. For this purpose, different interpretative methods
that interpret models built over unstructured data have been
developed [24].

In our case, we used the Local Interpretable Model-Agnostic
Explanations (LIME) method, which was introduced in 2016
by Ribeiro et al. [24]. Beside the SHapley Additive exPlana-
tions (SHAP) method, it is one of the most used, because it
also explains models that are built over images. The LIME

method explains the prediction of an individual input by
sampling its neighboring inputs and builds a sparse linear
model based on the predictions of these inputs. Features
with larger coefficients calculated in this linear model are
then considered more relevant to forecast the given input.
Generating a local explanation for an input requires sampling
around the input so that an explanation can be generated to its
prediction [25]. The algorithm behind LIME can explain the
predictions of any black box classifier with two or more output
classes, and its goal is to identify an interpretive model over
an interpretative representation that is locally faithful to the
classifier. In the case of image classification, the interpretative
representation is a binary vector that indicates the presence
or absence of neighboring sets of similar pixels, while the
classifier can display the image as a tensor with three color
channels per pixel. LIME requires an implementation of a
function from a classifier that accepts a set of classes and
then returns the probabilities for each class.

The explanation given by LIME is based on the sampling
of neighboring inputs of the selected input = and their outputs,
while returning as a result a model g from the class of potential
interpretive models G according to the following formula:

arg gggll(f,g,m) +Q(g)- (7

So, x denotes the input for which we want to know on the
basis of which value was determined to belong to the selected
class, f denotes the built model that we want to explain and
m, denotes the probability distribution around x. Not every
model is simple enough to be interpretive, so with Q(g) we
mark the complexity of model interpretation, that is opposite to
its interpretability. The part of the equation £(f, g, 7,) tells us
how the values of g approach the values of f at the location
defined by m,. In order to achieve high interpretability, this
value must be kept to a minimum [24].

III. EXPERIMENTS

To objectively evaluate the COVID-19 image classification
results, we conducted the following three experiments:

o base, where the CNN is trained in a conventional manner
without pre-training,

o TL, where transfer learning methodology is utilized, and

e GWOTLT, where our proposed method is used.

All conducted experiments were implemented in Python
programming language with the support of following libraries:
scikit-learn [26], Pandas [27], Numpy [28], NiaPy [29], Keras
[30] and Tensorflow [31].

Experiments were performed using the Intel Core i7-6700K
quad-core CPU running at 4 GHz, 64GB of RAM, and three
Nvidia GeForce Titan X Pascal GPUs each with dedicated
12GB of GDDRS5 memory.

A. Dataset

For the task of identifying COVID-19 from the chest X-
ray images, we used a publicly available dataset which was
recently prepared by Cohen et. al [3]. The dataset is composed



TABLE I
TARGET CLASS DISTRIBUTION OF COVID-19 IMAGE DATA COLLECTION.

Class COVID-19
image data collection
COVID-19 182
ARDS 4
SARS 11
Pneumocystis 15
Streptococcus 17
No finding 2
Chlamydophila 2
E.Coli 4
COVID-19, ARDS 2
Klebsiella 1
Legionella 2
Total 242
TABLE I
TARGET CLASS DISTRIBUTION OF AN EXTENDED COVID-19 IMAGE DATA
COLLECTION.
Extended COVID-19
Class . .
image data collection
COVID-19 182
Other 660
Total | 842

from the various public sources and already published papers.
In the Table I is presented the total number of collected images
as well as the distribution between the target classes. As
the dataset is being continuously improved in terms of total
number of collected images, we are reporting those statistics
as of April 4th 2020.

Observing the distribution between the target classes, we
can see that the majority of images belongs to "COVID-
19” target class, while the rest of the target classes are quite
under-represented. Since our goal is to perform the task of
identification of COVID-19 from the chest X-ray images, we
decided to transform the original COVID-19 image data col-
lection from multi-classification dataset to binary classification
dataset putting all of the "COVID-19” labeled images into
one group and the remaining images into the other group.
This way, we obtained the dataset with two different classes,
namely "COVID-19” and “other”, each with total of 182 and
60 images respectively. Since the target classes are still quite
unbalanced, we extended the “other” labeled group of images
with the X-ray images collected from the RSNA Pneumonia
Detection Challenge [32]. The RSNA Pneumonia Detection
Challenge addresses the task of locating lung opacities on
chest radiographs. In total the dataset is composed of 26,684
chest images annotated with three different classes: No Lung
Opacity, Lung Opacity and Normal. In order to mimic the
approximate distribution in our extended COVID-19 dataset,
we randomly selected 600 “Normal” labeled chest images
from RSNA Pneumonia Detection Challenge dataset, which
resulted in a extended dataset with properties presented in
Table II.

Since the chest X-ray images are collected from various

b)

Fig. 1. Examples of X-ray images, where a) represents a COVID-19 case
image, while b) represents an image with other or no pathology identified.

TABLE III
UTILIZED IMAGE AUGMENTATION PARAMETER SETTINGS.

Parameter Value
Rotation range 5
Width shift range 0.1

Height shift range 0.1
Shear range 0.1
Zoom range 0.1

Horizontal flip True

sources, the image size and format are varying. In Figure 1
are presented two samples from each of the target classes.

B. Data Pre-processing

As are the images in the extended COVID-19 image data
collection in various sizes, we applied the image resizing to
uniform target size of 224 x 224 pixels, which is in line with
default input size of the selected VGG19 CNN architecture.
Additionally, in the train time, we applied an image augmen-
tation technique, to prevent the over-fitting which commonly
occurs when dealing with pre-trained complex CNN architec-
ture and relatively small datasets.

The image augmentation in train time is conducted in a man-
ner where each training instance is randomly manipulated e.g.
rotated, zoomed, shifted, flipped, etc. within the given value
range. The complete list of utilized augmentation parameters
and its values can be observed in Table III. The value for
rotation range specifies the degree range for random rotation,
while the values for width shift and height shift range specifies
the fraction of a total image size for corresponding dimen-
sion. Shear range value defines a shear intensity — the shear
angle (in radians) in counter-clockwise direction and zoom
range value specifies the randomly selected zoom between
the lower and upper bounds defined as 1 — zoom_range and
14 zoom_range respectively. Lastly, the horizontal flip value
defines whether each image instance can be randomly flipped
horizontally or not.

C. CNN Setup

For the deep CNN architecture, we adapted a well known
VGGI19 architecture presented by Simonyan et. al in 2014



[33]. As presented in Figure 2, we left the convolutional base
(blocks from 1 to 5) of VGGI9 as it was presented originally,
while the classifier part of the architecture was customized.
Instead of a flatten layer, we utilized a 2-dimensional global
average pooling layer, followed by a dropout layer, fully
connected layer with ReLU activation function and fully
connected output layer with sigmoid activation function.

The dropout probability values for the base and TL ex-
periments were set to 0.5, while the dropout value for the
experiment utilizing the GWOTLT method is being optimized
(set) by the method itself. The number of units in fully
connected layer, followed by the dropout layer, was for the
base and TL experiments set to 256, while the number of
units for GWOTLT experiment is also being optimized by the
method itself.

For the TL and GWOTLT experiment, the transfer learning
was utilized. The VGG19 convolutional base was pre-trained
on the ImageNet dataset, while for the fine-tuning we enabled
only the last convolutional block (block 5). The rest of the
layers in convolutional base remained frozen (disabled for fine-
tuning).

D. GWOTLT Settings

Since the utilized GWOTLT method works in an iterative
manner, where next produced solution is based on fitness of
the previous one, we tailored the dataset split methodology in
order to retain the fairness between the compared approaches.
While the base and TL experiments consume the whole train-
ing split of the dataset for the training purpose, we additionally
divided the given training set in ratio 80:20, where the larger
subset was used for training different GWOTLT produced
solutions and evaluating them — calculating the fitness value
against the remaining smaller subset of the initial training set.

For each fold, the GWOTLT generates and evaluates 50
different solutions, from which the best — the one with the
best (lowest) fitness value is selected and finally evaluated
against the test split of the dataset. While this approach
makes the GWOTLT method computationally complex, we
also introduced the early stopping approach to the evaluation
of each solution, where the solutions which training is not
improving for 5 consecutive epochs is prematurely stopped.

E. Training Parameter Settings

Presented in Table IV are utilized training parameter settings
for each of the conducted experiments. For each fold every
method is provided with the total of 50 epochs, except the
GWOTLT which in worst case scenario, consumes a total
of 2500 epochs (50 epoch for each solution evaluation). The
batch size remains the same for all three experiments and it
is set to 32. For the base and TL experiments, we set the
learning rate to 1+ 10~° and optimizer to RMSprop, while the
learning rate and optimizer for GWOTLT is set (optimized) by
the method itself and therefore is not explicitly defined since
it is not chosen deterministically.

TABLE IV
TRAINING PARAMETER SETTINGS FOR CONDUCTED EXPERIMENTS.
Parameter Value
conventional | baseline | GWOTLT
Nr. of epochs 50 50 2500
Batch size 32 32 32
Learning rate 1%10=5 1%10=5 -
Optimizer RMSprop RMSprop -
TABLE V

COMPARISON OF AVERAGE ACCURACIES, AUCS, PRECISIONS, RECALLS,
F-1 SCORES, KAPPA COEFFICIENTS, AND TIME (IN SECONDS) WITH
STANDARD DEVIATIONS OVER 10-FOLD CROSS-VALIDATION.

metric base TL GWOTLT
Accuracy | 76,73 + 4.88 91.56 + 2.44 94.76 + 3.19
AUC 50.00 + 0.00 85.64 + 4.36 93.47 + 4.22
Precision | 76.73 + 0.41  92.71 4+ 2.25 97.42 + 2.70
Recall |100.00 + 0.00 96.76 + 2.48 95.83 &+ 4.66
F-1 86.83 £ 0.26 94.62 + 1.55 96.52 + 2.24
Kappa 0.00 £ 0.00 0.75 £ 0.08 0.86 + 0.08
Time |425.40 + 4.88 131.00 £ 2.11 2207.30 + 626.47

IV. RESULTS
A. Classification Performance

In order to evaluate the COVID-19 X-ray image classifica-
tion results objectively, we compared our GWOTLT method
with two baseline methods — base method for training the
CNN model and TL method that performs transfer learning
upon the same CNN architecture. For the base method, we
utilized the VGG19 [33] CNN architecture, pre-trained on
the ImageNet [34] dataset. For the TL method we utilized
the transfer learning approach and applied it on the same
VGG19 CNN convolutional base. In this manner, the differ-
ences among the obtained predictive performance results can
be contributed solely to the consequence of different learning
method used. For the sake of comparison, we performed a
series of experiments on the COVID-19 X-ray image dataset
using the 10-fold cross-validation approach.

Results, obtained from the conducted experiments, are sum-
marized in Table V. As can be observed from the table,
our proposed GWOTLT method showed the best performance
among the three compared methods regardless of the selected
compared metric, with the exception of training time. In
general, the second best results were obtained by the TL
method, while the worst results were obtained by the base
method.

Figure 3 shows a comparison of test AUC results, one
of the most important metric when evaluating classification
models in medicine. As we can see, the GWOTLT method
achieved the highest accuracy in all 10 folds, followed by
the TL method with second best results, while the results of
the base method lag quite far behind. The domination of the
GWOTLT method with regard to AUC can be easily observed
also on a violin plot (Figure 4). Not only that the mean AUC
is the highest, the GWOTLT produced results also with a bit
smaller standard deviation than the TL method. Similar results
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Fig. 2. The adapted VGG19 convolutional neural network architecture.
g ¢ o o m ¥ v ¢ . @ Q9 TABLE VI
2 2 2 2 2 2 2 2 2 2 STATISTICAL COMPARISON (p-VALUES) OF THE FRIEDMAN TEST AMONG
i i i i b i s i i i THE THREE METHODS AND WILCOXON SIGNED RANK TEST FOR
1.01 GWOTLT VS. OTHER TWO METHODS FOR ALL 7 METRICS.
0.91 Friedman test Wilcoxon signed rank test
metric all three GWOTLT vs. base GWOTLT vs. TL
0.8 Accuracy <0.001* 0.005%* 0.005%*
AUC <0.001* 0.005* 0.005*
071 Precision <0.001* 0.005* 0.005*
' Recall 0.002* 0.018* 0.767
061 --- base F-1 <0.001% 0.005% 0.075
T Kappa <0.001* 0.005* 0.028*
os] — GwoTLT __ Time <0.001* 0.005* 0.005*
Fig. 3. AUC results of compared methods on 10 folds. all 7 measures (acc, auc, prec, rec, F'-1, kappa, and time),
as suggested by Demsar [35]. The statistical results are sum-
AUC of compared methods on 10 folds marized in Table VI. We can see that there is a significant
1.04 difference among the three methods for all seven measures.
The GWOTLT is significantly better than the compared two
0.9 1 T 5=7.83% methods with regard to acc, AUC, precision, F'-1 and kappa,
while it is significantly worse than the other two methods with
0.8 1 | regard to the required training time.
074 6+43.47% B. GWOTLT Parameter Selection Analysis
: 6=35.64% . .
Presented in Table VII are the best performing selected
0.6 - values for optimized parameters for each fold. Interestingly, we
can see that in the majority of the folds, the number of selected
0.5 —— units in last fully-connected (dense) layer was set to 256,
base TL GWOTLT which is in line with the value which we handpicked for the

Fig. 4. Comparison of AUC for the three methods.

have been obtained also for other metrics, but are not shown
here in order not to unnecessarily extend the article.

To evaluate the statistical significance of classification
performance results, we first applied the Friedman test by
calculating the average Friedman ranks, Friedman asymptotic
significance and p-values for all the three methods and for

base and TL experiments. The selected dropout probabilities
are roughly ranging from 0.6 to 0.8 which is a bit higher
than what we manually selected for the remaining experiments.
Focusing on the selected optimizer function, we can observe
that the selection is evenly distributed between the RMSprop
and Adam optimizer, while the SGD is not a part of the best
found solution in any fold. Regarding the selection learning
rates, in the majority of folds (7 occurrences) the learning rate
is set to 5+ 10~* which is a bit higher than what we manually
set for other two experiments.



TABLE VII
BEST ACHIEVED SOLUTIONS FOR THE SOUGHT PARAMETERS PER FOLD.

Neurons in Dropout - Learnin;
Fold last dense layer probz?bility Optimizer rate ’
0 64 0.637667 rmsprop 0.00050

1 256 0.598971 adam 0.00050

2 256 0.698623 adam 0.00050
3 128 0.681882 adam 0.00050
4 1024 0.709137 rmsprop 0.00005
5 256 0.684796 rmsprop 0.00005
6 256 0.637454 adam 0.00050
7 256 0.729944 rmsprop 0.00100
8 128 0.728626 rmsprop 0.00050
9 256 0.794064 adam 0.00050

C. Interpretable Representation of Model

One of the most important problems when utilizing any
kind of predictive models for the task of decision making is
determining trust in individual predictions, especially when
such models are being used as a mission critical components
in the decision systems or are being used in the fields like
medicine, where predictions cannot be acted upon blind faith,
as the consequences may be catastrophic [24].

Commonly, the models are evaluated only using various
metrics on an available test dataset, but the metrics may not be
necessarily indicative of the models goal. Therefore, inspecting
individual instances and their interpretable representations is
a good complementary solution to gain useful insights on
how our model perceives it and also help us increase the
understanding and trust in our predictive model.

In Figure 5 some test instances of used dataset with their
corresponding interpretable representations of our best per-
forming predictive model are presented. The interpretable rep-
resentations are being generated using LIME method, where
green groups of pixels (super-pixel) are denoting identified
sections of image which have a positive impact towards
particular target class, while the red super-pixels are denoting
the sections of image which have a negative impact towards
the particular target class. In other words, the green super-
pixels in images above the label a) have positive impact for
classifying COVID-19 images, while the green super-pixels in
images above the label b) have positive impact for classifying
as other on no pathology identified.

Inspecting the group of samples diagnosed with COVID-19,
we can observe that the marked super-pixels in general are a
bit more focused on the thorax body region in contrast to
the marked super-pixels in the samples without any diagnosed
pathology, where neck, shoulders and hands are being marked
with large patches. Additionally, if we compare the images
pair-wise COVID-19 diagnosed versus the normal images, we
can observe that locations of positive (green) super-pixels in
COVID-19 images are roughly covering the same positions
as the negative (red) super-pixels in other classified images.
Focusing on each image pair from top to bottom, looking at the
first pair, in the chest region of COVID-19 (left) image, we can
see the that green super-pixels cover region of aortic arch and

a)

Fig. 5. Examples of explained predictive model decisions using LIME
method. The images above the a) represents the images with diagnosed
COVID-19, while the images above the b) represents the images with other
or no pathology identified.

a part of heart while the heart region in the image classified as
other (right) covers roughly the same position with negative
impact on predicted class. Similar can be observed also in the
second image pair where big green super-pixel on COVID-
19 image is positioned in the second zone of chest covering
carina and right main bronchus, where on the right image a
similar position is covered with red super-pixel. The third pair
is interesting from a perspective that the inverse of the green
and red patches when comparing the COVID-19 classified and
other classified images is located at the top of the third chest
zone on the right side of the lung. Also in the image classified
as other, it is interesting that the red super-pixel is surrounded
by green super-pixels, which is not the case in other image
pairs. Additionally, in the COVID-19 image a region of green
super-pixel covering the aortic arch and carina is clearly visible
which was also the case in previous pair but the right image
classified as other lacks the negative super-pixel in this case.

V. CONCLUSIONS

In this work, we proposed a new adapted image classifi-
cation method GWOTLT that trains a CNN using transfer
learning with fine-tuning, in which hyper-parameter values
are optimized with GWO approach. The proposed method has



been applied on a dataset of COVID-19 chest X-ray images.
The obtained results showed an impressive performance of the
method, achieving on average 94.76% accuracy and AUC of
93.47%, with a very small standard deviation.

Encouraged by the model’s predictive performance, we
adopted a local interpretable model-agnostic explanations ap-
proach to provide insights of the COVID-19 disease, based
on classification of chest X-rays. Thus, the LIME explana-
tion approach was able to provide some interesting insights
into the characteristics of COVID-19 disease, by performing
qualitative explanations upon the results of the trained model
classification of a set of X-ray images.

In the future, we would like to expand our research to utilize
different CNN architectures and compare it against VGG19 as
well as use extended COVID-19 datasets.
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