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A B S T R A C T

Childhood pneumonia, the leading cause of children mortality globally, is most commonly diagnosed based
on the radiographic data, which requires radiologic interpretation of X-ray images. With recent advancements
in the field of deep learning, the convolutional neural networks (CNN) have proven to be able to achieve
great performance in medical image segmentation, analysis and classification tasks. However, developing
and training methods utilizing CNN is still a complex and time-consuming process with several open issues
— generalization, demand for large datasets, and high time complexity. The optimization objective in the
training of CNN models has multiple minima, which do not necessarily generalize well and may result in poor
performance. Ensemble methods are commonly employed to address the generalization issue, but they require a
group of diverse models and are generally even more time-consuming. To address the issues of generalization,
dataset size and time complexity, we developed an ensemble method based on stochastic gradient descent
with warm restarts (SGDRE) that exploits the generalization capabilities of ensemble methods and SGD with
warm restarts mechanism, which is adopted to obtain a diverse group of classifiers, necessary for ensemble,
in one single training process, spending the same or less training time than a single CNN classification model.
The SGDRE method has been trained on publicly available pediatric chest X-ray images dataset and evaluated
using 10-fold cross-validation approach. The experimental results show a significant improvement of SGDRE
over the two compared baseline methods. With an achieved test accuracy of 96.26% and AUC of 95.15%, the
proposed method proved to be a very competitive classification method.
1. Introduction

Childhood pneumonia, reported by Rudan, Boschi-Pinto, Biloglav,
Mulholland, and Campbell (2008) is the leading cause of children
mortality globally. It is responsible for about 19% of all deaths in
children aged less than 5 years, the majority of which take place in
developing countries, particularly in Southeast Asia and Africa (Rudan,
et al., 2013). Two leading causes of pneumonia are bacterial and
viral pathogens. In contrast to viral pneumonia, which is treated with
supportive care, bacterial pneumonia requires urgent referral for im-
mediate antibiotic treatment, therefore accurate and timely diagnosis
is essential (Kermany, et al., 2018). The pneumonia is most commonly
diagnosed based on the radiographic data, which requires radiologic
interpretation of X-ray images.

The early attempts at computer-aided diagnosis (CAD) and analysis
of medical images were made in the 1960s (Lodwick, Haun, Smith,
Keller, & Robertson, 1963), when it was generally assumed that com-
puters could replace radiologists in detecting abnormalities because
computers are better performing at certain tasks than are human be-
ings, but those attempts were sadly not successful. Two decades later,
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in the 1980s, the large-scale and systematic research and development
of various CAD schemes were begun at the Kurt Rossman Laboratories
for Radiologic Image Research in the Department of Radiology at the
University of Chicago. At that time appeared to be extremely difficult
to carry out a computer analysis on lesions involved in medical images
and therefore, not easy to predict whether the development of CAD
schemes would be successful or not. However, research studies took
a turn with a different approach, which assumed that the computer
output could be utilized by radiologists instead of replacing them. This
approach is currently known as computer-aided diagnosis, which has
spread widely and quickly (Doi, 2007).

Through the years, the growth of the computational capacity en-
abled researchers to utilize more complex methods to drive the ex-
pansion of CAD and analysis of medical images even further. One of
such major breakthroughs occurred in 1998 with the LeCun’s proposal
of convolutional neural network (CNN) architecture LeNet5 (LeCun,
Bottou, Bengio, Haffner, et al., 1998), which enabled researchers from
various fields to tackle different image recognition tasks more easily.
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It also started an enormous expansion of the deep learning field. In
recent years, deep learning has become a leading machine learning
tool in medical image analysis (Qin, Yao, Shi, & Song, 2018), CAD
systems (Yanase & Triantaphyllou, 2019), biomedical signal segmen-
tation (Rouhi, Jafari, Kasaei, & Keshavarzian, 2015) and detection of
various human organ activities (Vrbancic, Fister, & Podgorelec, 2019).

One of such tasks, where the exploitation of CNN capabilities could
provide great results, is the detection of pneumonia from chest X-
ray images. As the rapid radiologic interpretation of X-ray images
is not always available, especially in low-resource countries where
childhood pneumonia has the highest rates of mortality, it would be
beneficial to utilize the modern CNN based methods to help with the
identification of pneumonia disease in the early stages (Kermany, et al.,
2018). However, developing and training methods utilizing CNNs is
still a complex and time-consuming process with several open issues.
One of the major problems is poor generalization. As CNN models are
used for solving the most complex problems (image pixels represent
several thousands of input attributes), its search space is huge, and the
learning optimization objective has multiple minima, all of which do
not necessarily generalize well. Therefore, picking the wrong minimum
can lead to poor performance. Another problem is the necessity for
large datasets (by an expert carefully labeled training instances) upon
which the model could be trained and optimized. The third issue is the
time complexity of the learning process.

In recent years, various CNN based methods has been presented
in order to address the issue of detecting chest pathologies (Bardou,
Zhang, & Ahmad, 2018; Chouhan, et al., 2020; Guan & Huang, 2020;
Ke, et al., 2019; Lakhani & Sundaram, 2017; Liang & Zheng, 2020;
Rajpurkar, et al., 2017; Shen, Han, Aberle, Bui, & Hsu, 2019; Taylor,
Mielke, & Mongan, 2018), which are showing promising results, in-
cluding the problem of detecting pneumonia from chest X-ray images.
In Rajpurkar, et al. (2017), Siddiqi (2019), Stephen, Sain, Maduh, and
Jeong (2019) the authors presented specialized CNN architectures for
the purpose of identifying pneumonia from chest X-ray images which
on the one hand deliver promising classification performance, while
on the other hand does not address the problem of time complexity or
the problem of generalization. Recently, various studies (Baltruschat,
Nickisch, Grass, Knopp, & Saalbach, 2019; Kermany, et al., 2018) have
shown that the utilization of transfer learning approaches provides us
with high classification performance utilizing different pre-trained CNN
architectures without the need of large labeled datasets. While utilizing
such approaches is most definitely promising, we have to consider the
problems introduced by using transfer learning, which are most com-
monly related to selecting a most suitable combination of fine-tunable
layers (Guo, et al., 2018; Vrbančič & Podgorelec, 2020) as well as the
problem of regularization when training complex CNN architecture on
a small dataset. Chouhan, et al. (2020), also presented a novel transfer
learning approach for pneumonia detection in chest X-ray images,
where outputs of multiple CNN architecture models were combined
in the ensemble method. While such approach provided state-of-the-
art performance, the time-complexity when using such approach is
increased. Most commonly, when utilizing the transfer learning ap-
proach, one would use a model pretrained on an ImageNet dataset.
In contrast to such an approach, Liang and Zheng (2020) constructed
a custom CNN architecture which was afterwards trained on a large
chest X-ray dataset containing a total of 112,120 chest X-ray images.
The obtained model was then used as a pre-trained model for utilization
in the transfer learning approach. While such approach also delivered
high classification performance, the problem of time complexity as well
as the problem of generalization still remains. Guan and Huang (2020)
in their research proposed a category-wises residual attention learning
framework for multi-label chest X-ray image classification utilizing
CNN as a feature embedding module and a residual attention module.
While the proposed approach achieved state-of-the-art classification
performance, the problem of generalization remains unaddressed. An-
2

other group of approaches, which is recently quite popular, is one
where the evolutionary algorithms are utilized (Chandra, Verma, Singh,
Jain, & Netam, 2021; El-Kenawy, et al., 2021; Khishe, Caraffini, &
Kuhn, 2021; Radiuk & Kutucu, 2020; Singh, Kumar, Mahmud, Kaiser,
& Kishore, 2021). Most commonly, the evolutionary algorithms are
exploited for the purpose of designing deep neural network architec-
tures (Khishe et al., 2021; Radiuk & Kutucu, 2020) or for the feature
selection task (Chandra et al., 2021; El-Kenawy, et al., 2021; Singh
et al., 2021) in which case the classification itself is conducted using
conventional classifiers or deep learning approaches.

In general the transfer learning based methods do have an impact
on the decreased time complexity in the process of training and do not
suffer when trained on smaller dataset (assuming we have a well pre-
trained model, which itself needs to be pre-trained on a huge amount of
data), the issue of generalization (picking the right one from multiple
minima) still remains. On the other hand, specialized CNN architectures
still require rather large datasets and do not solve any of the mentioned
issues well.

In order to address the mentioned issues, we developed an effi-
cient stochastic gradient descent with warm restarts ensemble (SGDRE)
method, which exploits the generalization capabilities of ensemble
methods and stochastic gradient descent with warm restarts mechanism
which is adopted to obtain a diverse group of classifiers, necessary for
ensemble, in one single training process, limited by a given training
budget not higher than for a single CNN classification model.

We summarize our contributions as follows:

• We present a novel ensemble method based on the stochastic gra-
dient descent with warm restarts utilizing Deep CNN, which ad-
dresses the common deep learning issues such as generalization,
size of dataset and time complexity of the training process.

• We presented new, sine based annealing function for stochastic
gradient descent with warm restarts method.

• We conducted an empirical evaluation of the presented method
against the problem of identification of childhood pneumonia.

• We performed an extensive performance analysis and comparison
of the results obtained from conducted experiments.

The remaining of the paper is structured as follows. In Section 2
methods and materials are described, upon which our proposed SGDRE
method is designed. The proposed method is explained in detail in
Section 3. Section 4 covers the experimental setup and settings, while
the results of the conducted experiments are presented and discussed in
Section 5. Section 6 concludes our paper by summarizing the presented
work and indicating possible directions for future studies.

2. Background

In general, the fundamental goal of learning is being capable of
generalizing the knowledge learned from training data to the unseen
instances (Zhou, 2012). Despite being a complex, non-convex opti-
mization problem with numerous parameters, simple methods such
as Stochastic Gradient Descent (SGD) and its variations (Adagrad,
RMSprop, Adam) are able to achieve good solutions when training
CNN models. The objective landscape in such complex problems has
generally multiple minima, all minimizing the training error, but not
necessarily all of them generalize well on unseen data. Picking the
wrong minimum can lead to poor generalization (Neyshabur, Bhojana-
palli, McAllester, & Srebro, 2017). One of the most common approaches
to tackle the problem of generalization are ensemble methods. The
cornerstone of each ensemble method is the diversity of the models,
which can be achieved using various subsets of dataset or by utiliz-
ing various classification algorithms (Polikar, 2006). While the CNN
based methods have proven to be the most successful methods for
the image classification tasks (Simonyan & Zisserman, 2014; Szegedy,
et al., 2015), the training process of such methods have high time

complexity, therefore training multiple CNN based methods in order
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to acquire diverse models is even a more time-consuming process.
While the strategy of creating an ensemble by utilizing the same type
of classification algorithm on different subsets of dataset could be
employed, commonly in the field of medical image analysis and CAD
we are facing rather small datasets, which makes the utilization of such
strategy more difficult.

Based on those grounds, in designing our SGDRE method we adopted
an averaging ensemble method to address the generalization issue. For
the purpose of collecting a diverse group of models, needed to construct
an efficient ensemble, we exploited the SGD with warm restarts (SGDR)
capability of exploring a larger part of search space. Exploring a larger
part of search space gives us the possibility of visiting more local
minima, which consequently gives us a chance to obtain diverse models
from each of the visited minima and in that way provide us with a
group of diverse models in one single training process. The mechanism
in SGDR, which enables the exploration of larger part of search space,
is achieved by occasionally restarting the learning rate to the higher
value. With such action, the optimizer is trying to escape from the
saddle point or local minimum and thus trying to find another, possibly
better minimum.

In the following sections, the utilized ensembling method and SGDR
mechanism are presented in a greater detail, after providing some brief
background of CNNs.

2.1. Convolutional neural network

In recent years, the convolutional neural networks (CNN) achieved
major breakthrough in various image recognition tasks in broad range
of fields from astronomy to the medicine. Although their beginning
dates back to the 1980s (Fukushima, 1980; LeCun et al., 1998), the
CNNs became the go-to method for classification tasks just few years
ago, with the increase of processing power, due to the development of
powerful graphical processing units as well as due to the development
of supporting libraries enabling the researchers and practitioners to
easily adopt such methods.

Regardless of how simple or complex the architecture of CNN seems
to be, they all have in common three architectural ideas: local receptive
fields, shared weights (or weight replication) and spatial or temporal
subsampling, presented in LeCun’s work (LeCun et al., 1998), which
are ensuring some degree of shift, scale and distortion invariance. Most
commonly, the CNN architectures are composed of one or more sequen-
tially connected convolutional and subsampling layers in alternative
fashion and at least one fully connected layer (standard multi-layer
perceptron layer) at the end.

The convolutional layer computes the convolution operation be-
tween the input matrix and a set of learnable filters, also known as
kernels. Each filter is sliding across the input matrix in both directions
performing the convolution with the local sub-block of input matrix and
producing feature planes, also known as feature maps. Most commonly,
a rectified linear unit (ReLU) function is applied to each feature map, to
improve the computational efficiency and also to reduce the vanishing
gradient effect (Morabito, Campolo, Ieracitano, & Mammone, 2019).

The convolutional layer is most commonly followed by a pooling or
subsampling layer, which performs a maximum or average subsampling
of the previously produced feature maps. The aim of the pooling layer
is to achieve shift-invariance, by reducing the resolution of the feature
maps and as a side effect, this operation also lowers the computational
complexity of training such model (Gu, et al., 2018).

2.2. Ensemble methods

The problem of generalization has an impact on more or less any
modern machine learning method. Good performance of a trained ma-
chine learning model on training data does not necessarily predict good
generalization performance, where the generalization performance is
defined as the performance of the classifier on data not seen during
3

the training (test data). One of the most common solutions to tackle
the problem of generalization is the usage of ensemble methods. A
cornerstone of any ensemble method is the diversity of classifiers in
an ensemble, where the diversity does not refer to the classifiers’
diverse performance, but to their diverse knowledge — i.e., individ-
ual classifiers within an ensemble make errors on different training
samples (Polikar, 2006). The second key component of any ensemble
method is the strategy utilized in combining classifiers. Over the years,
the huge amount of various strategies have been developed (Polikar,
2006; Zhou, 2012). One of the most straightforward, popular and
fundamental combination strategy is the averaging of numeric outputs,
which can be formally expressed as presented in (1):

𝐻(𝑥) = 1
𝑇

𝑇
∑

𝑖=1
ℎ𝑖(𝑥) (1)

where 𝐻(𝑥) represents the combined output of the ensemble, 𝑇 denotes
he number of individual classifiers {ℎ1,… , ℎ𝑇 } and ℎ𝑖 represents the
lassifiers’ output (Zhou, 2012).

.3. Stochastic Gradient Descent with warm restarts

Stochastic Gradient Descent (SGD) (Bottou, 2010) and its various
mproved variants such as Adam (Kingma & Ba, 2014), RMSprop (Tiele-
an & Hinton, 2012) and ADAGRAD (Duchi, Hazan, & Singer, 2011)
ave become in the recent years the de-facto approaches for optimizing
ifferent kinds of deep neural networks, mainly due to their ability
o avoid and even escape spurious saddle-points and local minima as
eported in study by Dauphin, et al. (2014).

The SGD is basically a drastic simplification of Gradient Descent
GD) algorithm proposed by Rumelhart, Hinton, Williams, et al. (1988).
radient descent is a way to minimize an objective function 𝐽 (𝜃) with

model parameters 𝜃 ∈ R𝑑 by updating them in the opposite direction
of the gradient objective function ∇∇𝜃𝐽 (𝜃) with respect to the parame-
ters (Ruder, 2016). In contrast to the GD where gradient is computed
exactly for each sample, the SGD in each iteration estimates gradient
on the basis of a single randomly picked example. Since the stochastic
algorithm does not need to remember which examples were visited
during the previous iterations, it can process examples on the fly,
which results in faster computation (Bottou, 2010). In recent years, the
majority of state-of-the-art methods utilizes the SGD variation known
as mini-batch SGD, which represents a good compromise between
GD’s low variance in error updates and SGD’s low time complexity.
The core principle of the mini-batch SGD or mini-batch GD is to
calculate the approximate gradient on the small number of random
samples — mini-batch, in contrast to SGD where one random sample is
picked for estimate gradient calculation and in contrast to GD where
the gradient is computed for each sample. As presented by Keskar,
Mudigere, Nocedal, Smelyanskiy, and Tang (2016), such approach also
tends to avoid sharper minima, due to the computation of gradients is
performed in small mini-batches and therefore inexact. The mini-batch
GD can be formally expressed as presented in (2) where 𝜂 denotes the
learning rate which determines the size of the steps we take to reach
a (local) minimum, while 𝑥(𝑖) represents a training sample and 𝑦(𝑖) the
corresponding label (Ruder, 2016).

𝜃 = 𝜃 − 𝜂 ⋅ ∇∇𝜃𝐽 (𝜃; 𝑥(𝑖∶𝑖+𝑛); 𝑦(𝑖∶𝑖+𝑛)) (2)

Two key factors to achieve good convergence are choosing a proper
learning rate and adjusting the learning rate during the training, known
as the learning rate scheduling. In fact, the most widely used algo-
rithms in the field of deep learning such as Adagrad, RMSprop and
Adam are exploiting those key factors in order to achieve the best
performance. For example, Adagrad adapts the learning rate of the
parameters by applying larger updates to infrequent parameters and
smaller updates to frequent parameters; as such, it is well-suited for
dealing with sparse data. RMSprop is an extension of Adagrad, which
seeks to reduce its aggressive, monotonically decreasing learning rate,
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dividing the learning rate by an exponentially decaying average of
squared gradients. Adam, on the other hand, in addition to storing an
exponentially decaying average of past squared gradients as RMSprop,
also keeps an exponentially decaying average of past gradients similar
to the momentum yielding the Adam update rule (Ruder, 2016).

As proven in recent studies (Huang, et al., 2017; Smith, 2017a),
a quite effective method for training deep neural networks, presented
by Loshchilov and Hutter (2016) is SGD with warm restarts (SGDR).
The basic idea of the mentioned SGDR method is to periodically sim-
ulate warm restarts of SGD, where in each restart the learning rate
is initialized to some value and is scheduled to decrease. The term
‘‘warm’’ in this context refers to continuing the training process of a
deep neural network instead of training from scratch with different
learning rate. As expected, the model performance after the increase of
learning rate suffers, but only temporarily. Eventually, the performance
of the model surpasses the previous one after the learning rate is being
annealed. Conventional approaches for annealing of the learning rate
dictates a monotonic decrease, while recent works suggest that cycling
annealing of the learning rate perturbs the parameters of a converged
model, which allows the model to find better local minimum and also
more diverse models after each cycle (Huang, et al., 2017; Loshchilov
& Hutter, 2016). Such behavior also enables the optimizer to explore a
larger part of the search space, and is therefore useful when ensemble
building is considered (Huang, et al., 2017; Loshchilov & Hutter, 2016).
Using such method could be also beneficial from the time complexity
standpoint, as results suggest that SGD with warm restarts requires 2 to
4 times fewer epochs than the commonly used learning rate schedule
schemes to achieve comparable or even better results, as demonstrated
in a study by Loshchilov and Hutter (2016).

3. SGDRE method

The SGDRE method is adopting the averaging ensemble method
in order to address the issue of generalization, while for the purpose
of obtaining the diverse group of classifiers needed to construct the
ensemble, SGDR mechanism is exploited.

The basic concept of our proposed ensemble method is presented in
Fig. 1. Essentially, our method consists of four phases and is designed
to efficiently work under the limited training budget — limited number
of epochs. The first three phases: Train — initial phase, SGD restart 1
and SGD restart 2 are phases where the training of our CNN model
occurs, while the last, fourth phase Ensembling phase is the phase where
we evaluate and select ensemble candidates and join them into final
ensemble for classifying the given chest X-ray image instances.

To obtain the most diverse models as possible, we adopted the
SGDR method with combination of two known learning rate annealing
functions or learning rate schedules: cosine annealing initially pre-
sented by Loshchilov and Hutter (2016) and formally characterized
in Eq. (3), and linear decrease (Smith, 2017a) formally characterized
in (4). Additionally, we introduce our own developed sine based an-
nealing function, which can be formally expressed in Eq. (5), where
𝑡 denotes the iteration number, 𝑇 denotes the number of epochs and
𝑎0 denotes the initial learning rate. All three utilized learning rate
scheduling functions can be observed on Fig. 2.

𝛼(𝑡) = 𝛼0 ⋅ (1 + cos( 𝑡
𝑇
𝜋)) (3)

𝛼(𝑡) = 𝛼0 ⋅ (1 −
𝑡
𝑇
) (4)

(𝑡) = 𝛼0 ⋅ (1 − sin( 𝜋 ⋅ 𝑡
2 ⋅ 𝑇

)) (5)

With regard to the limited training budget (a given number of
training epochs), the proposed method starts with the Train — initial
phase, where we train our CNN for a maximum of half of the given
epochs utilizing a linear annealing function with initial learning rate
set to 1⋅10−1. At this phase, the early stopping technique is employed in
4

order to stop the training process before consuming all the given budget
Fig. 1. The conceptual diagram of the proposed SGDRE method.

epochs) if the model’s performance is not improving anymore. In addi-
ion, model checkpoint technique during the training process is applied,
hich stores the best performing model throughout the whole process
f training. For the early stopping and model checkpoint technique, we
re monitoring the area under the ROC curve (AUC) metric, which is
alculated after each training epoch. After the Train — initial phase is
inished, the mentioned best performing model is obtained and passed
o the next training phase. For the next two training phases, SGD restart

1 and SGD restart 2, the remaining training budget is evenly distributed.
Since each of the remaining training phases consist of two SGD warm
restarts with different learning rates, the remaining training budget is
divided by four. The distribution of the training budget over the all
three training phases is precisely defined with Eqs. (6)–(8), where 𝐵
denotes the total training budget in epochs, 𝐵𝑖𝑛𝑖𝑡 denotes the budget
allocated for Train — initial phase, 𝐵𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 denotes the number of
consumed epochs in Train — initial phase, while 𝐵𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 and 𝐵𝑝𝑒𝑟𝑠𝑡𝑎𝑟𝑡
epresents the remaining number of training budget in epochs and
he number of epochs allocated for each of the SGD restart training
espectively.

𝑖𝑛𝑖𝑡 = ⌊

𝐵
2
⌋ (6)

𝐵𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 = 𝐵 − 𝐵𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 (7)

𝐵𝑝𝑒𝑟_𝑟𝑒𝑠𝑡𝑎𝑟𝑡 = ⌊

𝐵𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟
4

⌋ (8)

Taking the best performing model (𝑀0) from the first Train — initial
phase, the training is restarted in SGD restart 1 phase which is composed
of two SGD warm restarts, each of which are allocated with the training
budget of 𝐵𝑝𝑒𝑟_𝑟𝑒𝑠𝑡𝑎𝑟𝑡 epochs. The SGD restart 1 phase is utilizing the
SGD optimizer with our own sine based learning rate function for the
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Fig. 2. Representation of different learning rate scheduling functions used in training
phases of SGRE method.

Table 1
The parameter settings for each of the training phases of SGDRE method.

Phase Optimizer Initial LR Annealing func.

Train — initial phase SGD 1 ⋅ 10−1 linear

SGD restart 1 SGD 1 ⋅ 10−2 sine
2 ⋅ 10−2

SGD restart 2 SGD 10−2 cosine
2 ⋅ 10−2

purpose of decreasing the learning rate through the process of training.
The first warm restart is performed with the initial learning rate set to
1 ⋅10−2 as can be observed from Table 1, while the second warm restart
is performed with initial learning rate set to 2 ⋅ 10−2. The values for the
initial learning rates are inferred from the initial study from Loshchilov
and Hutter (2016), where the SGDR was first presented.

In the same manner as in the SGD restart 1 phase, the SGD restart 2
is performed. The only difference between SGD restart 1 phase and the
SGD restart 2 phase is the employment of the sine annealing function
instead of our custom cosine annealing function along with the SGD
optimizer. Different annealing functions in each phases were selected
in order to obtain as diverse models as possible. The usage of different
annealing functions gives us the possibility to converge to the different
minima as the learning rate is decreased by different schedules.

After each warm restart in the phases SGD restart 1 and SGD restart
2 is completed, the snapshot of the model is taken, therefore in SGD
restart 1 phase the 𝑀1 and 𝑀2 models are obtained, while in the SGD
restart 2 the 𝑀3 and 𝑀4 models are obtained as presented in Fig. 1.

The last, fourth phase is the Ensembling phase, where the obtained
odels (𝑀0,𝑀1,𝑀2,𝑀3,𝑀4) from the previously completed training
hases are evaluated. The evaluation of the collected models is per-
ormed against the evaluation subset of the training set, observing
he AUC metric. The best three performing models (models with the
ighest AUC value) are selected to construct the final ensemble. For
he ensembling method, the model averaging was selected, where the
rediction probabilities from each of the top-3 selected models are
eing averaged, and the resulting average value is then being used for
lassification as the final ensemble prediction probability.

From Fig. 3 we can observe the SGDRE training process in com-
arison to the more conventional training approach utilizing the train-
ng of a single CNN with the Adam optimizer (the baseline method
𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝐷𝐴𝑀 , presented later, is used here). If we observe the SGD

estart lines, it is clearly shown that after each warm restart and in-
rease of learning rate, the training accuracy initially drops and is then
eing improved towards the end of each SGD restart phase as expected.
ocusing on the marked obtained models (𝑀0,𝑀1,𝑀2,𝑀3,𝑀4), we can
ee that none of them is achieving as high training accuracy as the
𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝐷𝐴𝑀 . Such behavior is expected, since the purpose of our
5

a

GDRE method is not to obtain the best performing model overall,
ut instead to obtain a group of diverse models, each with a bit of
ifferent knowledge, which will then be used to construct an ensemble
nd (hopefully) performed better.

. Experiments

To properly evaluate the performance and efficiency of our pro-
osed SGDRE method, we conducted experiments comparing our
ethod to the baseline method (Stephen et al., 2019) utilizing the same
NN architecture and Adam optimizer, which has already proven to
eliver great results on the task of identifying the pneumonia from
hest X-ray images. Additionally, we conducted experiments based on
he baseline method utilizing the SGD optimizer function in order to
bserve the behavior and the performance of the SGD optimizer func-
ion utilized using the baseline CNN architecture without any learning
ate scheduling strategy being applied. Comparing the performance
f the latter experiment also enables us to explore the performance
apabilities of various learning rate strategies applied in our proposed
ethod.

In the following sections, the dataset, data pre-processing, experi-
ental settings, evaluation methods and used metrics are presented.

The whole experimental environment as well as the proposed SG-
RE method was implemented in Python programming language. For

he construction and training of CNNs, Keras (Chollet et al., 2015)
ramework with Tensorflow (Abadi et al., 2015) back-end was used.
arious supportive routines were implemented with the help of the

ollowing external libraries: Numpy (Van Der Walt, Colbert, & Varo-
uaux, 2011), Pandas (McKinney, 2010) and scikit-learn (Pedregosa,
t al., 2011).

All the conducted experiments were performed utilizing the Intel
ore i7-6700K quad-core CPU running at 4 GHz clock speed with 64 GB
f DDR4 memory, and three Nvidia GeForce Titan X Pascal GPUs each
ith 12 GB of GDDR5 memory, running the Linux Mint 19 operating

ystem.

.1. Chest X-ray images (Pneumonia) dataset

The Chest X-ray images dataset is publicly available dataset (Ker-
any & Goldbaum, 2018), originally collected and presented by Ker-
any, et al. (2018). The dataset consists in total of 5858 labeled chest
-ray images from pediatric patients of one to five years old from
uangzhou Women and Children’s Medical Center, Guangzhou. Out of
ll images, 4274 are characterized as depicting pneumonia and 1,584
s normal. The image samples of the used dataset are presented in
ig. 4. The collected image dataset in composed of images of various
izes, stored in the JPEG file format. All chest radiographs were initially
creened for quality control by removing all low quality or unreadable
cans. Two expert physicians were employed for the task of grading
he diagnoses of chest X-ray images before being cleared for training
he CNN (Kermany, et al., 2018).

.2. Dataset preprocessing

The dataset originally contains images of various sizes, which we
ave resized to the unified size of 200 × 200 px. For the baseline
xperiments, we have also applied several augmentation methods in
ccordance to Stephen et al. (2019) to artificially increase the number
nd quality of image instances in the dataset. The usage of various
ugmentation techniques and parameter settings for utilized techniques

re presented in Table 2.
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Fig. 3. Visualization of SGDRE training process in comparison to the conventional training of 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝐷𝐴𝑀 . With M are marked stored checkpoint models used for construction
of ensemble.
Fig. 4. Two image samples from Chest X-ray images dataset: (a) represents X-ray image
of normal lungs, (b) represent X-ray image of pneumonia lungs.

Table 2
Utilized image augmentation techniques with corresponding values used for the purpose
of generating augmented training samples.

Technique Setting

Rescale 1∕255
Rotation range 40◦

Height shift 0.2%
Width Shift 0.2%
Shear range 0.2%
Zoom range 0.2%
Horizontal flip 𝑇 𝑟𝑢𝑒

4.3. Baseline CNN

For the baseline CNN, we adopted the architecture specifically
developed for the task of identifying the pneumonia, which was initially
presented in a research study by Stephen et al. (2019). The detailed
listing of utilized CNN architecture layers is presented in Table 3. The
architecture (see Fig. 5) is composed of four sequentially connected
pairs of convolutional and maximization pooling layers, followed by a
flatten layer, dropout layer and two fully connected layers. The convo-
lutional layers are comprised of the kernels with size 3 × 3 with ReLU
activation function and connected to the maximization pooling layers
with kernel size 2 × 2. The first convolutional layer employs 32 filters,
second 64 filters, while third and fourth convolutional layers employs
128 filters. Last maximization pooling layer is connected to the flatten
layer, which converts the extracted 2-dimensional feature planes into
1-dimensional feature vector, which is classified using dropout layer
with a dropout probability set to 0.5 and two fully connected (dense)
6

Table 3
Utilized CNN architecture layers with the corresponding settings and output shape. For
the convolutional layers the settings represent the kernel size and number of kernels
used, while for the maximization pooling layers the settings denotes the window size.

Layer Settings Output shape

Convolution 3 × 3, 32 (None, 198, 198, 32)
Max pooling 2 × 2 (None, 99, 99, 32)
Convolution 3 × 3, 64 (None, 97, 97, 64)
Max pooling 2 × 2 (None, 48, 48, 64)
Convolution 3 × 3, 128 (None, 46, 46, 128)
Max pooling 2 × 2 (None, 23, 23, 128)
Convolution 3 × 3, 128 (None, 21, 21, 128)
Max pooling 2 × 2 (None, 10, 10, 128)
Flatten – (None, 12800)
Dropout probability 0.5 (None, 12800)
Dense 512 units, ReLU (None, 512)
Dense 2 units, Softmax (None, 2)

Table 4
Parameter settings for baseline (with Adam optimizer), baseline SGD and SGDRE
methods.

Parameter Baseline Baseline SGD SGDRE

No. of epochs 100 100 100
Batch size 32 32 32
Optimizer Adam SGD SGD
Learning rate 1 ⋅ 10−3 1 ⋅ 10−1 1 ⋅ 10−1

layers of size 512 and 1, respectively. The last dense layer is utilizing
the Sigmoid activation function, which performs the classification task.

4.4. Parameter settings

In Table 4 the parameter setting for training the baseline and
SGDRE methods are presented. As can be observed from the table, both
methods share the parameter settings for number of epochs and batch
size, while the optimizer function used in Baseline method is Adam,
while on the other hand, Baseline SGD and proposed SGDRE method
are utilizing the conventional SGD optimizer. The selected learning rate
value for the Baseline method with Adam optimizer is set based on
its initial research study by Kingma and Ba (2014), where the authors
proposed that the good default setting for learning rate is 1 ⋅ 10−3.
The learning rate value for the other two methods was set based on
the research study by Loshchilov and Hutter (2016) where the SGDR
method was initially presented.
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Fig. 5. The graphical representation of utilized CNN architecture, initially proposed by Stephen et al. (2019).
4.5. Evaluation method and metrics

With the presented experimental settings and methods’ parameter
setting, we conducted three experiments. First experiment was con-
ducted utilizing the known successful method from Stephen et al.
(2019) reported as BaselineADAM. In the second experiment, reported
as BaselineSGD, we adopted the baseline method, but we trained it
with the basic SGD optimizer instead of Adam optimizer. The third
experiment was conducted with our proposed SGDRE method. All of
the experiments are run against Chest X-ray images dataset, tackling
the task of classifying the normal and pneumonia images.

To objectively evaluate the performance of each method, we
adopted a well-established 10-fold cross-validation methodology,
where the initial dataset is evenly divided into 10 subsets (folds). Nine
of those folds are then used for the training phase (training set) and
the remaining one for the performance testing (test set) of the trained
model. In the same manner, the process is repeated in total 10 times,
each time leaving different fold out for testing. Due to the nature of
our proposed method, we had to further split our training set even
further in ratio 80:20, as presented in Fig. 6, in order to perform the
evaluation and selection of our models, and then test the performance
of the ensemble on the test set.

In each repetition of 10-fold cross-validation methodology, we cal-
culated the following metrics: general accuracy, AUC, precision, re-
call/sensitivity, specificity, F-1 measure, and Cohen’s kappa coefficient.
Given the adaptive mechanisms in SGDRE method, at the train time, we
have also recorded how many epochs it consumed and how much time
was needed to complete each fold.

5. Results

In this section, we present the obtained experimental results, in
accordance with the defined research questions, we investigated in our
study:

• RQ 1: Can the classification performance of childhood pneumonia
based on chest X-ray images be improved with our proposed
method SGDRE?

– RQ 1.1: What is the classification performance of SGDRE,
and how does it compare with existing methods utilizing
CNNs?

– RQ 1.2: What is the influence of SGDRE on generalization
of learned models?

– RQ 1.3: Can SGDRE improve classification performance
without enlarging the initial dataset?
7

Fig. 6. Conceptual overview of the 𝑘-fold cross-validation methodology adopted in our
work. The 𝑘 denotes the number of folds, in our case 𝑘 is set to 10.

– RQ 1.4: Can SGDRE provide an ensemble of several classi-
fication models without increasing the time-complexity of
training?

In order to evaluate our proposed method objectively, we compared
it with two baseline methods — 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝐷𝐴𝑀 (a method presented
by Stephen et al. (2019) that uses Adam as an optimization function
for training the CNN model) and 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑆𝐺𝐷 (a method that uses the
same CNN architecture but SGD as an optimization function instead
of Adam). All three compared methods use the same CNN architecture
as proposed in Stephen et al. (2019). In this manner, the differences
among the obtained predictive performance results can be contributed
solely to the consequence of different learning method used. For the
sake of comparison, we performed a series of experiments on the Chest
X-ray dataset using the 10-fold cross-validation approach.

Results, obtained from the conducted experiments, are summa-
rized in Table 5. As can be observed from the table, our proposed
SGDRE method showed the best performance among the three com-
pared methods, regardless of the selected compared metric. In general,
the second-best results were obtained by the 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝐷𝐴𝑀 method,
while the worst results were obtained by the 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑆𝐺𝐷 method.

5.1. An in-depth analysis of classification results from the three compared
methods

5.1.1. General accuracy
First, we compared the obtained accuracy results. The accuracy

metric is the most general metric in classification, expressing a share of
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Table 5
Comparison of average accuracies, AUCs, F -1 scores, precisions, recalls, kappa coef-
icient, consumed numbers of epochs and time (in seconds) with standard deviations
ver 10-fold cross-validation.
Metrics BaselineADAM BaselineSGD SGDRE

Accuracy 92.81 ± 1.48 90.97 ± 6.51 96.26 ± 0.94
AUC 91.98 ± 3.14 87.60 ± 13.33 95.15 ± 1.32
Precision 96.38 ± 2.69 93.71 ± 7.50 97.32 ± 0.79
Rec./Sens. 93.80 ± 2.66 94.92 ± 3.65 97.57 ± 0.93
Specificity 90.15 ± 8.01 80.28 ± 28.69 92.74 ± 2.20
𝐹 -1 95.01 ± 1.04 94.05 ± 3.59 97.44 ± 0.64
Kappa 0.82 ± 0.04 0.74 ± 0.26 0.91 ± 0.02
Epoch 100.00 ± 0.00 100.00 ± 0.00 98.10 ± 0.02
Time 528.70 ± 15.75 490.10 ± 12.78 440.30 ± 9.59

Fig. 7. Accuracy of compared methods on 10 folds.

Fig. 8. Violin plots presenting the accuracy of the compared three methods.

nstances among all, which have been correctly classified by a classifier
odel. Fig. 7 shows a comparison of test accuracy results obtained by

he three compared methods for all 10 folds on the Chest X-ray dataset.
s we can see, the SGDRE method achieved the highest accuracy in all
0 folds, while the results of two baseline methods alternate with the
xception of fold-8, in which the 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑆𝐺𝐷 seems not to converge
ell.

To evaluate the statistical significance of these results, we first
pplied the Friedman test as suggested by Demsar (2006) by calculating
he asymptotic significance for the three compared methods on all
0 folds. As the results are not normally distributed, the Friedman
est was applied, which is a non-parametric statistical test used to
etect differences in the results of various methods across multiple
est attempts. The results of the performed Friedman test with regard
o accuracy show that differences between the three methods are
tatistically significant (𝑝 < 0.001).
8

Fig. 9. AUC of compared methods on 10 folds.

To test further whether the results of our proposed method SGDRE,
which obtained the highest average accuracy, are indeed significant,
the Wilcoxon signed-rank test was applied next, as suggested by Demsar
(2006), to compare SGDRE with both baseline methods (the Holm–
Bonferroni correction was applied). The Wilcoxon signed rank test is a
non-parametric alternative to the paired T-Test, which can be used to
compare the statistical equality of two methods over the same sample.
It tests whether the difference of achieved ranks of the two methods
is statistically significant (Moore, McCabe, & Craig, 2009). In our case,
the Wilcoxon test was used to compare the results, achieved by our
proposed method SGDRE, with both baseline methods 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝐷𝐴𝑀
and 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝑆𝐺𝐷, one by one. If the Wilcoxon test resulted in a
statistically significant difference between the two methods, the one
with the higher average rank can be regarded as the better method. The
method SGDRE achieved the best average rank among three methods
(𝑟𝑎𝑛𝑘 = 3.0 on the scale from 1 being the worst result up to 3 being the
perfect score), and it turned out that the results of SGDRE are indeed
significantly better than the results from the other two methods (in both
cases, when compared either to 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝐴𝐷𝐴𝑀 and 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑆𝐺𝐷, the
esulting 𝑝 < 0.001).

The domination of our SGDRE with regard to achieved accuracy can
e easily observed also on a violin plot of the comparison of the three
ethods (see Fig. 8). Beside having the highest average accuracy, the

GDRE’s accuracy results across 10 folds also had by far the lowest
tandard deviation, demonstrating the method’s good generalization
apability.

.1.2. AUC
As in the case of accuracy, the analyses of other predictive perfor-

ance metrics have been performed similarly. In this manner, Fig. 9
hows a comparison of AUC (Area Under Curve) results obtained by the
hree compared methods on test data for all 10 folds. Beside accuracy,
UC is one of the most important metric to consider when evaluating
classification model, especially in medicine. The AUC represents

he probability that a classifier will rank a randomly chosen positive
nstance (a patient with pneumonia in our case) higher (i.e. with
reater suspicion) than a randomly chosen negative one (a patient who
oes not have a pneumonia) (Hanley & McNeil, 1982). AUC has the
ttractive property that it side-steps the need to specify the costs of the
ifferent kinds of misclassification (Hand & Till, 2001).

We can see that SGDRE achieved the best AUC results in 7 out
f 10 folds, while the remaining three wins were achieved by the
𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝐷𝐴𝑀 method. Again, the SGDRE method achieved the most

imilar AUC results in all 10 folds, while the AUC results of the two
aseline methods vary more.

The performed Friedman test revealed that the differences among
he three methods are statistically significant (𝑝 = 0.045). The highest
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Fig. 10. Violin plots presenting the AUC of the compared three methods.

rank were achieved by the SGDRE (𝑟𝑎𝑛𝑘 = 2.6), following by the
𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝐷𝐴𝑀 (𝑟𝑎𝑛𝑘 = 1.9) and 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑆𝐺𝐷 (𝑟𝑎𝑛𝑘 = 1.5). The
erformed Wilcoxon test confirmed significant dominance of SGDRE
𝑝 = 0.0069 when compared to 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑆𝐺𝐷, and 𝑝 = 0.0284 when
ompared to 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝐷𝐴𝑀).

Fig. 10 shows the distribution density of the AUC values, the min-
mum, maximum, mean and median values for each of the three
ompared methods, as well as the 𝛿 difference between AUC mean
alues. As we can see, again, the SGDRE not only outperformed both
ompared methods, but also has the smallest standard deviation. The
mall variation of AUC results across different folds, achieved by our
GDRE method, complies with the presumption that our method will
eneralize better, by being able to obtain diverse models due to the
xploitation of the SGDR capabilities.

.1.3. Precision, recall/sensitivity, specificity, and 𝐹 -1 measure
Similarly, we also performed analyses of precision, recall (also

amed sensitivity), specificity, and 𝐹 -1 measure (see Fig. 11).
Precision can be defined as the fraction of relevant instances (pa-

ients of certain class — i.e. having pneumonia or not in our case)
mong the retrieved instances (patients, classified to a certain class
y a classification model). Recall, on the other hand, can be defined
s the fraction of relevant instances that have been retrieved over the
otal amount of relevant instances. Both precision and recall are usually
onsidered as a pair, as the improvement of one generally decrease the
ther and vice versa. We can see, that or proposed SGDRE method once
gain achieved the most stable results (with the lowest variance) with
he highest average value for both two metrics.

Similar to precision and recall, also sensitivity and specificity met-
ics are usually observed as a pair. Sensitivity is a metric, equal to
ecall, that measures the proportion of actual positive instances (pa-
ients with actual pneumonia) that are correctly identified as such
patients classified as having pneumonia). Specificity, on the other
and, measures the proportion of actual negative instances (patients
ot having pneumonia) that are correctly identified as such (patients
lassified as not having pneumonia). Like it was the case already
ith recall (sensitivity), also with regard to specificity our proposed
GDRE metric performed the best on average with (substantially) lower
eviation. The improvement of SGDRE with regard to the two baselines
re particularly high in the case of specificity, indicating the better
eneralization of SGDRE that is able to classify also negative instances
uch more correctly (note that the amount of negative instances within

he dataset is much lower). All these can be well observed on the violin
lots of these metrics (see Fig. 12).

The performed Friedman tests revealed that differences among the
hree methods are statistically not significant in the case of precision
9

Fig. 11. Precision (top), recall/sensitivity (middle) and specificity (bottom) of
compared methods on 10 folds.

(𝑝 = 0.1225) and specificity (𝑝 = 0.1905). However, in both cases
SGDRE achieved the highest average rank (in case of precision SGDRE
achieved 𝑟𝑎𝑛𝑘 = 2.4, 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝐷𝐴𝑀 𝑟𝑎𝑛𝑘 = 2.1 and 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑆𝐺𝐷 𝑟𝑎𝑛𝑘
= 1.5; in case of specificity SGDRE achieved 𝑟𝑎𝑛𝑘 = 2.3, followed by
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝐷𝐴𝑀 with 𝑟𝑎𝑛𝑘 = 2.15 and 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑆𝐺𝐷 with 𝑟𝑎𝑛𝑘 = 1.55).
In the case of recall/sensitivity, however, the differences turned out to
be significant (Friedman test: 𝑝 = 0.0208), with SGDRE being the best
method (Wilcoxon test: 𝑝 = 0.0093 when compared to 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝐷𝐴𝑀
and 𝑝 = 0.0367 when compared to 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑆𝐺𝐷).

The 𝐹 -1 measure can be interpreted as a harmonic mean of the
precision and recall. It is considered as a kind of substitution for general
accuracy and is preferred to accuracy, especially in cases of imbalanced
datasets. In our case, the obtained results of 𝐹 -1 measure were very
similar to accuracy, with the statistical evaluation being completely the
same (the ranks and the results of Friedman and Wilcoxon test).
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Fig. 12. Comparison of precision (top), recall/sensitivity (middle) and specificity
(bottom) for the three methods.

5.1.4. Cohen’s kappa
Fig. 13 shows a comparison of Cohen’s kappa results obtained by the

three compared methods on test data for all 10 folds. Cohen’s kappa is a
metric that compares an observed accuracy with an expected accuracy
(random chance). It takes into account random chance, which generally
means that it is less misleading than simply using accuracy as a metric.
When comparing different classification models, an interesting aspect
to be considered is the interpretation of magnitude, although existing
magnitude guidelines are not universally accepted. Thus, Landis and
Koch (1977) characterized values <0 as indicating no agreement, 0–
0.20 as slight, 0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–0.80 as
substantial, and 0.81–1 as almost perfect agreement. Similarly, Fleiss,
Levin, and Paik (2003) equally arbitrary guidelines characterize kappas
> 0.75 as excellent, 0.40–0.75 as fair to good, and < 0.40 as poor. We
can see that SGDRE achieved the highest kappa in all 10 folds, with the
10
Fig. 13. Cohen’s kappa of compared methods on 10 folds.

Fig. 14. Violin plots presenting the Cohen’s kappa values for the compared three
methods.

lowest variance in results (see also Fig. 14). In each fold, the SGDRE’s
kappa value was at least 0.87.

The performed Friedman test revealed that the differences among
the three methods are statistically significant (𝑝 < 0.001). The highest
average rank were achieved by the SGDRE method (𝑟𝑎𝑛𝑘 = 3.0), with
the two baselines following (both achieved 𝑟𝑎𝑛𝑘 = 1.5). Also, the
performed Wilcoxon test confirmed significant dominance of SGDRE
(𝑝 = 0.0051 when compared to both baselines).

5.1.5. Training time and epochs
Finally, Fig. 15 shows a comparison of total training time, used to

train all the models for all ten folds. Please note, that the total training
time for the SGDRE method includes the training of all single CNNs,
which are needed to construct an ensemble, while the two baseline
methods each trains only a single model for each fold. Notwithstanding
this fact, we can see that SGDRE needed the least amount of time
to train all the models, being the fastest in each single fold as well,
followed by the 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑆𝐺𝐷 method, while 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝐷𝐴𝑀 needed
the most time in each of 10 folds (see also Fig. 16).

The performed Friedman test confirmed the significance of differ-
ences among the three methods (𝑝 < 0.001). The average ranks were:
SGDRE (𝑟𝑎𝑛𝑘 = 3.0), 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝑆𝐺𝐷 (𝑟𝑎𝑛𝑘 = 2.0), and
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝐷𝐴𝑀 (𝑟𝑎𝑛𝑘 = 1.0). Performed Wilcoxon test confirmed sig-
nificant dominance of SGDRE (𝑝 = 0.005 in each pair-wise comparison).

Focusing on the values of consumed epochs, we can observe that
the two baseline methods consumed the maximum number of epochs
available for training while the SGDRE method, on average, consumed
98 epochs. Since for all compared methods, the number of epochs at the
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Fig. 15. Total time, used to train the models for all 10 folds (in seconds).

Fig. 16. Violin plots presenting the total time used to train the models for the
ompared three methods.

eginning of training was set to 100, the lower number of consumed
pochs for the SGDRE method is due to the early stopping technique
mployed in the initial training phase.

.2. Worst-case analysis of classification metrics

In the previous section, we were focusing on best average values
f compared methods, and also presented the median values as well
s the standard deviations for each metric. However, in many specific
omains such as medicine, where the poor classifier’s performance
ould lead to catastrophic consequences, it is an imperative to also
valuate the worst-case performance of classifiers. Therefore, we have
ompared the worst values of classification metrics for the three com-
ared methods obtained from conducted 10-fold cross-validation. The
alues for each metric of compared classifiers are presented in a form
f radar chart in Fig. 17.

Observing the radar chart, we can see that for each classifica-
ion metric, the proposed SGDRE method achieved the highest score,
hile the worst performing method is 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 − 𝑆𝐺𝐷, which in the

ase of specificity and kappa value achieved value 0. The remaining
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝐷𝐴𝑀 method is noticeably better in the aspects of each
classification metric, while also lagging behind the proposed SGDRE
method quite a bit.

5.3. Analysis of commonly misclassified samples

In addition to the statistical analysis of the obtained results and
worst-case analysis, we also conducted a more qualitative analysis of
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Fig. 17. Radar chart presenting worst-case values of classification metrics for the
compared three methods.

some common misclassified samples. Fig. 18 represents three chest
X-ray samples which were misclassified. The top two samples are in
the dataset labeled as ‘‘normal’’ while the SGDRE method classified
them as ‘‘pneumonia’’. On the other hand, the bottom one is in a
dataset labeled as ‘‘pneumonia’’ while the SGDRE method classified
it as ‘‘normal’’. For the presented samples, we cross-validated the
pathology prediction with the utilization of Chester (Cohen, Bertin,
& Frappier, 2019) application, developed by Machine Learning and
Medicine Lab, and Mila - Quebec AI institute. For each of the three
presented cases, the Chester tool predicted the highest probability for
lung opacity pathology (which should not be considered as a diagnosis,
but rather as supportive information for a medical expert). The blue
regions on each sample indicate the areas of chest X-ray images which
have the highest impact on predicted pathology, while the transparent
pixels have negligible impact on the prediction. The lung opacity, from
the medical domain standpoint, refers to any area that preferentially
attenuates the X-ray beam and therefore appears more opaque than the
surrounding area. In that sense, it is a nonspecific term that does not
indicate the size or the pathologic nature of the abnormality (Goodman,
2014). Lung opacity is commonly present with pneumonia, since the
body’s immune response fills the sacks in the lungs (termed alveoli)
with fluids instead with air. However, the diagnosis of the pneumonia
is, in general, based on the chest X-ray image combined with additional
medical data and lab results. When inspecting only the chest X-ray
image, there might be images which look similar to pneumonia, but
with different diagnosis. Therefore, such cases as presented in Fig. 18
are challenging to classify, since a machine learning method can only
make a prediction based on the given chest X-ray image.

5.4. Comparison of SGDRE to some other published results

There are some publications, in which the authors have used the
same Chest X-ray dataset to classify the childhood pneumonia. The
work that we based our proposed method SGDRE on is Stephen et al.
(2019), where the authors report the accuracy of 93.7%, which is inline
with the results, we obtained when re-implementing the method and
using it as 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒𝐴𝐷𝐴𝑀 in our experiments (the obtained average ac-
curacy was 92.8%; the somewhat lower score than originally reported
can be contributed to the fact that we used the 10-fold cross validation
methodology instead of a simpler split approach).

Kermany, et al. (2018) presented a method that exploited the trans-
fer learning approach utilizing the Inception V3 CNN architecture —
the authors report the accuracy of 92.8%, lagging behind SGDRE by a
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Fig. 18. Misclassified examples of chest X-ray images.

margin of 3.46%. In another recently published work by Siddiqi (2019),
the authors presented a custom sequential CNN architecture, achieving
the accuracy of 94.39% which is an improvement over the method
from Kermany, et al. (2018), but still lags behind the SGDRE method
by a margin of 1.87%.

Kermany, et al. (2018) reported also sensitivity (93.2%) and speci-
ficity (90.1%), which both lag behind SGDRE’s results (sensitivity =
97.6%, specificity = 92.7%). On the other hand, the reported AUC of
96.8% seems to be a bit better than SGDRE’s (AUC = 95.2%).

Siddiqi (2019) reported beside accuracy also sensitivity (99.0%) and
specificity (86.0%). We can see a big difference among the two values,
indicating the bias of the trained model toward correctly classifying
positive subjects (children having pneumonia). In this manner, the
SGDRE lag slightly behind with regard to sensitivity (by a margin of
1.4%), but having a substantial advantage with regard to specificity
(by a margin of 6.7%), indicating a much better balance of SGDRE.

5.5. Answering the research questions

After inspecting all the results, we can say that our proposed SGDRE
method improved the classification performance of childhood pneu-
monia from Chest X-ray images. All the observed performance metrics
12
were better than the two compared baseline methods, most of the im-
provements, with exception of precision and specificity, which however
achieved the highest average rank, were also statistically significant. A
comparison of obtained results with published works, who reported the
classification results upon the same problem, showed that SGDRE can
indeed be considered as a very competitive classification method.

Using the SGDRE method, which exploits the SGDR’s capabilities
of exploring a larger part of a search space and therefore visits more
minima, we were able to obtain a more diverse group of models, from
which we were able to construct an ensemble using the averaging
strategy. Based on the achieved the smallest standard deviation for all
of the observed performance metrics as well as their highest average
values, we can infer that the models obtained and combined in such
manner are achieving a high level of generalization.

Observing the classification performance results, achieved by com-
pared methods, we can see that the SGDRE method outperformed the
two compared methods. In contrast to SGDRE, the compared baseline
methods are in fact utilizing the dataset augmentation technique, which
artificially enlarges the initial dataset and therefore the SGDRE did
improve the classification performance without enlarging the initial
dataset.

Based on the reported empirical results, we can confirm that the
SGDRE method is capable of providing a group of diverse classifica-
tion models in a single training process, consuming even less time
as the compared baseline methods, while delivering overall better
classification performance.

5.6. Threats to validity

When utilizing the machine learning methods and techniques, the
validity threats most commonly relate to the diversity, quality and
quantity of the data. Therefore, it is crucial how the data used for
training is gathered, pre-processed and labeled or pre-classified. In our
case, we used the Chest X-ray images (Pneumonia) dataset, which was
initially screened for quality control by removing all low quality or
unreadable scans. Afterwards, two expert physicians were employed for
the task of grading the diagnoses of chest X-ray images before being
cleared for using for the purpose of CNN training. Nevertheless, our
obtained results and findings may not be generalized to all specific
situations since the used dataset may not be representative.

Additionally, splitting the data into training and test set could also
be a potential threat to validity, since the methods may over-fit and bias
the results. Therefore, instead of splitting the dataset randomly using
the simple train-test split (70% or 80% for training and 30% or 20% for
testing), we adopted a well-known 10-fold cross-validation procedure
in which the initial dataset is split into 10 subsets, 9 of which are used
for training while the remaining set is used for the evaluation. The
process was repeated in total for 10 times, each time evaluating the
method against a different subset.

In this study, we utilized deep CNN and SGD with warm restarts
for the task of identifying pneumonia from chest X-ray images. While
the proposed SGDRE method delivered promising results for the given
task and could be, in practice, easily adapted to different image clas-
sification domain problems, the reported performance could not be
generalized to different datasets. Therefore, extending the research to
different domain problems might be part of our future work.

6. Conclusion

In this paper, we presented a new SGDRE method, an ensemble
method based on stochastic gradient descent with warm restarts mech-
anism for the identification of childhood pneumonia from chest X-ray
images. The method exploits the averaging ensemble method and SGDR
capabilities to converge and escape from the local minima with warm
restarts of the learning rate, which enables the method to visit several
local minima and therefore to obtain a more diverse group of models,
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needed for the construction of a well performing ensemble. During the
training phases, the SGDRE method employs three different learning
rate schedules, one of which is the new custom sine based schedule
first presented in this work. Employment of different learning rate
annealing functions enables our method to obtain even more diverse
models in the training phase as the learning rates are decreased in
different manner. From three training phases, five CNN models are ob-
tained, which are evaluated against the evaluation subset in the fourth,
ensemble construction phase. The top-3 best performing models are
then combined using the averaging ensemble strategy, which outputs
the final classification prediction of the SGDRE method.

Through the conducted experiments, the presented SGDRE method
has proven to perform well under the limited training budget. The SG-
DRE method outperformed the compared methods in all the measured
metrics. With the exception of precision and specificity, the improve-
ments of classification metrics when compared to other methods are
also statistically significant. The achieved proposed methods’ average
accuracy of 96.26% is also better than the highest reported accuracy
(94.39%) from published works, using the same Chest X-ray image
dataset.

In the future, we would like to apply our proposed SGDRE method
to other medical classification tasks using different image datasets
and assess SGDRE’s predictive performance. Regarding the nature of
SGDRE, we would only need to choose an appropriate CNN architecture
tailored to a specific problem. We presume that obtained results would
be competitive with existing state-of-the-art methods for the chosen
classification task.
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